summaryrefslogtreecommitdiff
path: root/numpy/polynomial/laguerre.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/laguerre.py')
-rw-r--r--numpy/polynomial/laguerre.py119
1 files changed, 59 insertions, 60 deletions
diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py
index 9d88162ce..8d2705d5d 100644
--- a/numpy/polynomial/laguerre.py
+++ b/numpy/polynomial/laguerre.py
@@ -66,17 +66,18 @@ import numpy.linalg as la
from . import polyutils as pu
from ._polybase import ABCPolyBase
-__all__ = ['lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline',
- 'lagadd', 'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow',
- 'lagval', 'lagder', 'lagint', 'lag2poly', 'poly2lag', 'lagfromroots',
- 'lagvander', 'lagfit', 'lagtrim', 'lagroots', 'Laguerre', 'lagval2d',
- 'lagval3d', 'laggrid2d', 'laggrid3d', 'lagvander2d', 'lagvander3d',
- 'lagcompanion', 'laggauss', 'lagweight']
+__all__ = [
+ 'lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', 'lagadd',
+ 'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow', 'lagval', 'lagder',
+ 'lagint', 'lag2poly', 'poly2lag', 'lagfromroots', 'lagvander',
+ 'lagfit', 'lagtrim', 'lagroots', 'Laguerre', 'lagval2d', 'lagval3d',
+ 'laggrid2d', 'laggrid3d', 'lagvander2d', 'lagvander3d', 'lagcompanion',
+ 'laggauss', 'lagweight']
lagtrim = pu.trimcoef
-def poly2lag(pol) :
+def poly2lag(pol):
"""
poly2lag(pol)
@@ -117,12 +118,12 @@ def poly2lag(pol) :
[pol] = pu.as_series([pol])
deg = len(pol) - 1
res = 0
- for i in range(deg, -1, -1) :
+ for i in range(deg, -1, -1):
res = lagadd(lagmulx(res), pol[i])
return res
-def lag2poly(c) :
+def lag2poly(c):
"""
Convert a Laguerre series to a polynomial.
@@ -194,7 +195,7 @@ lagone = np.array([1])
lagx = np.array([1, -1])
-def lagline(off, scl) :
+def lagline(off, scl):
"""
Laguerre series whose graph is a straight line.
@@ -224,13 +225,13 @@ def lagline(off, scl) :
5.0
"""
- if scl != 0 :
+ if scl != 0:
return np.array([off + scl, -scl])
- else :
+ else:
return np.array([off])
-def lagfromroots(roots) :
+def lagfromroots(roots):
"""
Generate a Laguerre series with given roots.
@@ -280,9 +281,9 @@ def lagfromroots(roots) :
array([ 0.+0.j, 0.+0.j])
"""
- if len(roots) == 0 :
+ if len(roots) == 0:
return np.ones(1)
- else :
+ else:
[roots] = pu.as_series([roots], trim=False)
roots.sort()
p = [lagline(-r, 1) for r in roots]
@@ -337,10 +338,10 @@ def lagadd(c1, c2):
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
- if len(c1) > len(c2) :
+ if len(c1) > len(c2):
c1[:c2.size] += c2
ret = c1
- else :
+ else:
c2[:c1.size] += c1
ret = c2
return pu.trimseq(ret)
@@ -385,10 +386,10 @@ def lagsub(c1, c2):
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
- if len(c1) > len(c2) :
+ if len(c1) > len(c2):
c1[:c2.size] -= c2
ret = c1
- else :
+ else:
c2 = -c2
c2[:c1.size] += c1
ret = c2
@@ -499,13 +500,13 @@ def lagmul(c1, c2):
elif len(c) == 2:
c0 = c[0]*xs
c1 = c[1]*xs
- else :
+ else:
nd = len(c)
c0 = c[-2]*xs
c1 = c[-1]*xs
- for i in range(3, len(c) + 1) :
+ for i in range(3, len(c) + 1):
tmp = c0
- nd = nd - 1
+ nd = nd - 1
c0 = lagsub(c[-i]*xs, (c1*(nd - 1))/nd)
c1 = lagadd(tmp, lagsub((2*nd - 1)*c1, lagmulx(c1))/nd)
return lagadd(c0, lagsub(c1, lagmulx(c1)))
@@ -556,16 +557,16 @@ def lagdiv(c1, c2):
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
- if c2[-1] == 0 :
+ if c2[-1] == 0:
raise ZeroDivisionError()
lc1 = len(c1)
lc2 = len(c2)
- if lc1 < lc2 :
+ if lc1 < lc2:
return c1[:1]*0, c1
- elif lc2 == 1 :
+ elif lc2 == 1:
return c1/c2[-1], c1[:1]*0
- else :
+ else:
quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
rem = c1
for i in range(lc1 - lc2, - 1, -1):
@@ -576,7 +577,7 @@ def lagdiv(c1, c2):
return quo, pu.trimseq(rem)
-def lagpow(c, pow, maxpower=16) :
+def lagpow(c, pow, maxpower=16):
"""Raise a Laguerre series to a power.
Returns the Laguerre series `c` raised to the power `pow`. The
@@ -613,24 +614,24 @@ def lagpow(c, pow, maxpower=16) :
# c is a trimmed copy
[c] = pu.as_series([c])
power = int(pow)
- if power != pow or power < 0 :
+ if power != pow or power < 0:
raise ValueError("Power must be a non-negative integer.")
- elif maxpower is not None and power > maxpower :
+ elif maxpower is not None and power > maxpower:
raise ValueError("Power is too large")
- elif power == 0 :
+ elif power == 0:
return np.array([1], dtype=c.dtype)
- elif power == 1 :
+ elif power == 1:
return c
- else :
+ else:
# This can be made more efficient by using powers of two
# in the usual way.
prd = c
- for i in range(2, power + 1) :
+ for i in range(2, power + 1):
prd = lagmul(prd, c)
return prd
-def lagder(c, m=1, scl=1, axis=0) :
+def lagder(c, m=1, scl=1, axis=0):
"""
Differentiate a Laguerre series.
@@ -708,7 +709,7 @@ def lagder(c, m=1, scl=1, axis=0) :
n = len(c)
if cnt >= n:
c = c[:1]*0
- else :
+ else:
for i in range(cnt):
n = n - 1
c *= scl
@@ -815,9 +816,9 @@ def lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
if cnt != m:
raise ValueError("The order of integration must be integer")
- if cnt < 0 :
+ if cnt < 0:
raise ValueError("The order of integration must be non-negative")
- if len(k) > cnt :
+ if len(k) > cnt:
raise ValueError("Too many integration constants")
if iaxis != axis:
raise ValueError("The axis must be integer")
@@ -831,7 +832,7 @@ def lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
c = np.rollaxis(c, iaxis)
k = list(k) + [0]*(cnt - len(k))
- for i in range(cnt) :
+ for i in range(cnt):
n = len(c)
c *= scl
if n == 1 and np.all(c[0] == 0):
@@ -924,22 +925,21 @@ def lagval(x, c, tensor=True):
if isinstance(x, (tuple, list)):
x = np.asarray(x)
if isinstance(x, np.ndarray) and tensor:
- c = c.reshape(c.shape + (1,)*x.ndim)
+ c = c.reshape(c.shape + (1,)*x.ndim)
-
- if len(c) == 1 :
+ if len(c) == 1:
c0 = c[0]
c1 = 0
- elif len(c) == 2 :
+ elif len(c) == 2:
c0 = c[0]
c1 = c[1]
- else :
+ else:
nd = len(c)
c0 = c[-2]
c1 = c[-1]
- for i in range(3, len(c) + 1) :
+ for i in range(3, len(c) + 1):
tmp = c0
- nd = nd - 1
+ nd = nd - 1
c0 = c[-i] - (c1*(nd - 1))/nd
c1 = tmp + (c1*((2*nd - 1) - x))/nd
return c0 + c1*(1 - x)
@@ -1174,7 +1174,7 @@ def laggrid3d(x, y, z, c):
return c
-def lagvander(x, deg) :
+def lagvander(x, deg):
"""Pseudo-Vandermonde matrix of given degree.
Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
@@ -1229,14 +1229,14 @@ def lagvander(x, deg) :
dtyp = x.dtype
v = np.empty(dims, dtype=dtyp)
v[0] = x*0 + 1
- if ideg > 0 :
+ if ideg > 0:
v[1] = 1 - x
- for i in range(2, ideg + 1) :
+ for i in range(2, ideg + 1):
v[i] = (v[i-1]*(2*i - 1 - x) - v[i-2]*(i - 1))/i
return np.rollaxis(v, 0, v.ndim)
-def lagvander2d(x, y, deg) :
+def lagvander2d(x, y, deg):
"""Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
@@ -1299,7 +1299,7 @@ def lagvander2d(x, y, deg) :
return v.reshape(v.shape[:-2] + (-1,))
-def lagvander3d(x, y, z, deg) :
+def lagvander3d(x, y, z, deg):
"""Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
@@ -1490,13 +1490,13 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None):
y = np.asarray(y) + 0.0
# check arguments.
- if deg < 0 :
+ if deg < 0:
raise ValueError("expected deg >= 0")
if x.ndim != 1:
raise TypeError("expected 1D vector for x")
if x.size == 0:
raise TypeError("expected non-empty vector for x")
- if y.ndim < 1 or y.ndim > 2 :
+ if y.ndim < 1 or y.ndim > 2:
raise TypeError("expected 1D or 2D array for y")
if len(x) != len(y):
raise TypeError("expected x and y to have same length")
@@ -1516,7 +1516,7 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None):
rhs = rhs * w
# set rcond
- if rcond is None :
+ if rcond is None:
rcond = len(x)*np.finfo(x.dtype).eps
# Determine the norms of the design matrix columns.
@@ -1535,9 +1535,9 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None):
msg = "The fit may be poorly conditioned"
warnings.warn(msg, pu.RankWarning)
- if full :
+ if full:
return c, [resids, rank, s, rcond]
- else :
+ else:
return c
@@ -1566,7 +1566,6 @@ def lagcompanion(c):
.. versionadded::1.7.0
"""
- accprod = np.multiply.accumulate
# c is a trimmed copy
[c] = pu.as_series([c])
if len(c) < 2:
@@ -1634,9 +1633,9 @@ def lagroots(c):
"""
# c is a trimmed copy
[c] = pu.as_series([c])
- if len(c) <= 1 :
+ if len(c) <= 1:
return np.array([], dtype=c.dtype)
- if len(c) == 2 :
+ if len(c) == 2:
return np.array([1 + c[0]/c[1]])
m = lagcompanion(c)
@@ -1651,8 +1650,8 @@ def laggauss(deg):
Computes the sample points and weights for Gauss-Laguerre quadrature.
These sample points and weights will correctly integrate polynomials of
- degree :math:`2*deg - 1` or less over the interval :math:`[0, \inf]` with the
- weight function :math:`f(x) = \exp(-x)`.
+ degree :math:`2*deg - 1` or less over the interval :math:`[0, \inf]`
+ with the weight function :math:`f(x) = \exp(-x)`.
Parameters
----------