summaryrefslogtreecommitdiff
path: root/numpy/polynomial/laguerre.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/laguerre.py')
-rw-r--r--numpy/polynomial/laguerre.py94
1 files changed, 54 insertions, 40 deletions
diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py
index 7e7e45ca1..89bb8e168 100644
--- a/numpy/polynomial/laguerre.py
+++ b/numpy/polynomial/laguerre.py
@@ -1,5 +1,7 @@
"""
-Objects for dealing with Laguerre series.
+==================================================
+Laguerre Series (:mod:`numpy.polynomial.laguerre`)
+==================================================
This module provides a number of objects (mostly functions) useful for
dealing with Laguerre series, including a `Laguerre` class that
@@ -7,60 +9,72 @@ encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).
+Classes
+-------
+.. autosummary::
+ :toctree: generated/
+
+ Laguerre
+
Constants
---------
-- `lagdomain` -- Laguerre series default domain, [-1,1].
-- `lagzero` -- Laguerre series that evaluates identically to 0.
-- `lagone` -- Laguerre series that evaluates identically to 1.
-- `lagx` -- Laguerre series for the identity map, ``f(x) = x``.
+.. autosummary::
+ :toctree: generated/
+
+ lagdomain
+ lagzero
+ lagone
+ lagx
Arithmetic
----------
-- `lagadd` -- add two Laguerre series.
-- `lagsub` -- subtract one Laguerre series from another.
-- `lagmulx` -- multiply a Laguerre series in ``P_i(x)`` by ``x``.
-- `lagmul` -- multiply two Laguerre series.
-- `lagdiv` -- divide one Laguerre series by another.
-- `lagpow` -- raise a Laguerre series to a positive integer power.
-- `lagval` -- evaluate a Laguerre series at given points.
-- `lagval2d` -- evaluate a 2D Laguerre series at given points.
-- `lagval3d` -- evaluate a 3D Laguerre series at given points.
-- `laggrid2d` -- evaluate a 2D Laguerre series on a Cartesian product.
-- `laggrid3d` -- evaluate a 3D Laguerre series on a Cartesian product.
+.. autosummary::
+ :toctree: generated/
+
+ lagadd
+ lagsub
+ lagmulx
+ lagmul
+ lagdiv
+ lagpow
+ lagval
+ lagval2d
+ lagval3d
+ laggrid2d
+ laggrid3d
Calculus
--------
-- `lagder` -- differentiate a Laguerre series.
-- `lagint` -- integrate a Laguerre series.
+.. autosummary::
+ :toctree: generated/
+
+ lagder
+ lagint
Misc Functions
--------------
-- `lagfromroots` -- create a Laguerre series with specified roots.
-- `lagroots` -- find the roots of a Laguerre series.
-- `lagvander` -- Vandermonde-like matrix for Laguerre polynomials.
-- `lagvander2d` -- Vandermonde-like matrix for 2D power series.
-- `lagvander3d` -- Vandermonde-like matrix for 3D power series.
-- `laggauss` -- Gauss-Laguerre quadrature, points and weights.
-- `lagweight` -- Laguerre weight function.
-- `lagcompanion` -- symmetrized companion matrix in Laguerre form.
-- `lagfit` -- least-squares fit returning a Laguerre series.
-- `lagtrim` -- trim leading coefficients from a Laguerre series.
-- `lagline` -- Laguerre series of given straight line.
-- `lag2poly` -- convert a Laguerre series to a polynomial.
-- `poly2lag` -- convert a polynomial to a Laguerre series.
-
-Classes
--------
-- `Laguerre` -- A Laguerre series class.
+.. autosummary::
+ :toctree: generated/
+
+ lagfromroots
+ lagroots
+ lagvander
+ lagvander2d
+ lagvander3d
+ laggauss
+ lagweight
+ lagcompanion
+ lagfit
+ lagtrim
+ lagline
+ lag2poly
+ poly2lag
See also
--------
`numpy.polynomial`
"""
-from __future__ import division, absolute_import, print_function
-
-import warnings
import numpy as np
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index
@@ -1193,7 +1207,7 @@ def lagvander2d(x, y, deg):
.. versionadded:: 1.7.0
"""
- return pu._vander2d(lagvander, x, y, deg)
+ return pu._vander_nd_flat((lagvander, lagvander), (x, y), deg)
def lagvander3d(x, y, z, deg):
@@ -1247,7 +1261,7 @@ def lagvander3d(x, y, z, deg):
.. versionadded:: 1.7.0
"""
- return pu._vander3d(lagvander, x, y, z, deg)
+ return pu._vander_nd_flat((lagvander, lagvander, lagvander), (x, y, z), deg)
def lagfit(x, y, deg, rcond=None, full=False, w=None):