summaryrefslogtreecommitdiff
path: root/numpy/polynomial/legendre.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/legendre.py')
-rw-r--r--numpy/polynomial/legendre.py255
1 files changed, 221 insertions, 34 deletions
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py
index 4a2082e3c..5a72217d0 100644
--- a/numpy/polynomial/legendre.py
+++ b/numpy/polynomial/legendre.py
@@ -23,6 +23,10 @@ Arithmetic
- `legdiv` -- divide one Legendre series by another.
- `legpow` -- raise a Legendre series to an positive integer power
- `legval` -- evaluate a Legendre series at given points.
+- `legval2d` -- evaluate a 2D Legendre series at given points.
+- `legval3d` -- evaluate a 3D Legendre series at given points.
+- `leggrid2d` -- evaluate a 2D Legendre series on a Cartesian product.
+- `leggrid3d` -- evaluate a 3D Legendre series on a Cartesian product.
Calculus
--------
@@ -51,18 +55,18 @@ See also
"""
from __future__ import division
-__all__ = ['legzero', 'legone', 'legx', 'legdomain', 'legline',
- 'legadd', 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow',
- 'legval', 'legder', 'legint', 'leg2poly', 'poly2leg',
- 'legfromroots', 'legvander', 'legfit', 'legtrim', 'legroots',
- 'Legendre']
-
import numpy as np
import numpy.linalg as la
import polyutils as pu
import warnings
from polytemplate import polytemplate
+__all__ = ['legzero', 'legone', 'legx', 'legdomain', 'legline',
+ 'legadd', 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow',
+ 'legval', 'legval2d', 'legval3d', 'leggrid2d', 'leggrid3d',
+ 'legder', 'legint', 'leg2poly', 'poly2leg', 'legfromroots',
+ 'legvander', 'legfit', 'legtrim', 'legroots', 'Legendre']
+
legtrim = pu.trimcoef
@@ -814,33 +818,58 @@ def legint(cs, m=1, k=[], lbnd=0, scl=1):
return cs
-def legval(x, cs):
- """Evaluate a Legendre series.
+def legval(x, c, tensor=True):
+ """ Evaluate a Legendre series.
+
+ If `c` is of length ``n + 1``, this function returns the value:
- If `cs` is of length `n`, this function returns :
+ ``p(x) = c[0]*L_0(x) + c[1]*L_1(x) + ... + c[n]*L_n(x)``
- ``p(x) = cs[0]*P_0(x) + cs[1]*P_1(x) + ... + cs[n-1]*P_{n-1}(x)``
+ If `x` is a sequence or array and `c` is 1 dimensional, then ``p(x)``
+ will have the same shape as `x`. If `x` is a algebra_like object that
+ supports multiplication and addition with itself and the values in `c`,
+ then an object of the same type is returned.
- If x is a sequence or array then p(x) will have the same shape as x.
- If r is a ring_like object that supports multiplication and addition
- by the values in `cs`, then an object of the same type is returned.
+ In the case where c is multidimensional, the shape of the result
+ depends on the value of `tensor`. If tensor is true the shape of the
+ return will be ``c.shape[1:] + x.shape``, where the shape of a scalar
+ is the empty tuple. If tensor is false the shape is ``c.shape[1:]`` if
+ `x` is broadcast compatible with that.
+
+ If there are trailing zeros in the coefficients they still take part in
+ the evaluation, so they should be avoided if efficiency is a concern.
Parameters
----------
- x : array_like, ring_like
- Array of numbers or objects that support multiplication and
- addition with themselves and with the elements of `cs`.
- cs : array_like
- 1-d array of Legendre coefficients ordered from low to high.
+ x : array_like, algebra_like
+ If x is a list or tuple, it is converted to an ndarray. Otherwise
+ it is left unchanged and if it isn't an ndarray it is treated as a
+ scalar. In either case, `x` or any element of an ndarray must
+ support addition and multiplication with itself and the elements of
+ `c`.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree n are contained in ``c[n]``. If `c` is multidimesional the
+ remaining indices enumerate multiple Legendre series. In the two
+ dimensional case the coefficients may be thought of as stored in
+ the columns of `c`.
+ tensor : boolean, optional
+ If true, the coefficient array shape is extended with ones on the
+ right, one for each dimension of `x`. Scalars are treated as having
+ dimension 0 for this action. The effect is that every column of
+ coefficients in `c` is evaluated for every value in `x`. If False,
+ the `x` are broadcast over the columns of `c` in the usual way.
+ This gives some flexibility in evaluations in the multidimensional
+ case. The default value it ``True``.
Returns
-------
- values : ndarray, ring_like
- If the return is an ndarray then it has the same shape as `x`.
+ values : ndarray, algebra_like
+ The shape of the return value is described above.
See Also
--------
- legfit
+ legval2d, leggrid2d, legval3d, leggrid3d
Notes
-----
@@ -850,29 +879,187 @@ def legval(x, cs):
--------
"""
- # cs is a trimmed copy
- [cs] = pu.as_series([cs])
- if isinstance(x, tuple) or isinstance(x, list) :
+ c = np.array(c, ndmin=1, copy=0)
+ if c.dtype.char not in 'efdgFDGO':
+ c = c + 0.0
+ if isinstance(x, (tuple, list)):
x = np.asarray(x)
+ if isinstance(x, np.ndarray) and tensor:
+ c = c.reshape(c.shape + (1,)*x.ndim)
- if len(cs) == 1 :
- c0 = cs[0]
+ if len(c) == 1 :
+ c0 = c[0]
c1 = 0
- elif len(cs) == 2 :
- c0 = cs[0]
- c1 = cs[1]
+ elif len(c) == 2 :
+ c0 = c[0]
+ c1 = c[1]
else :
- nd = len(cs)
- c0 = cs[-2]
- c1 = cs[-1]
- for i in range(3, len(cs) + 1) :
+ nd = len(c)
+ c0 = c[-2]
+ c1 = c[-1]
+ for i in range(3, len(c) + 1) :
tmp = c0
nd = nd - 1
- c0 = cs[-i] - (c1*(nd - 1))/nd
+ c0 = c[-i] - (c1*(nd - 1))/nd
c1 = tmp + (c1*x*(2*nd - 1))/nd
return c0 + c1*x
+def legval2d(x, y, c):
+ """
+ Evaluate 2D Legendre series at points (x,y).
+
+ This function returns the values:
+
+ ``p(x,y) = \sum_{i,j} c[i,j] * L_i(x) * L_j(y)``
+
+ Parameters
+ ----------
+ x,y : array_like, algebra_like
+ The two dimensional Legendre seres is evaluated at the points
+ ``(x,y)``, where `x` and `y` must have the same shape. If `x` or
+ `y` is a list or tuple, it is first converted to an ndarray.
+ Otherwise it is left unchanged and if it isn't an ndarray it is
+ treated as a scalar. See `legval` for explanation of algebra_like.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than 2 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The values of the two dimensional Legendre series at points formed
+ from pairs of corresponding values from `x` and `y`.
+
+ See Also
+ --------
+ legval, leggrid2d, legval3d, leggrid3d
+
+ """
+ return legval(y, legval(x, c), False)
+
+
+def leggrid2d(x, y, c):
+ """
+ Evaluate 2D Legendre series on the Cartesion product of x,y.
+
+ This function returns the values:
+
+ ``p(a,b) = \sum_{i,j} c[i,j] * L_i(a) * L_j(b)``
+
+ where the points ``(a,b)`` consist of all pairs of points formed by
+ taking ``a`` from `x` and ``b`` from `y`. The resulting points form a
+ grid with `x` in the first dimension and `y` in the second.
+
+ Parameters
+ ----------
+ x,y : array_like, algebra_like
+ The two dimensional Legendre series is evaluated at the points in
+ the Cartesian product of `x` and `y`. If `x` or `y` is a list or
+ tuple, it is first converted to an ndarray, Otherwise it is left
+ unchanged and if it isn't an ndarray it is treated as a scalar. See
+ `legval` for explanation of algebra_like.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than 2 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The values of the two dimensional Legendre series at points in the
+ Cartesion product of `x` and `y`.
+
+ See Also
+ --------
+ legval, legval2d, legval3d, leggrid3d
+
+ """
+ return legval(y, legval(x, c))
+
+
+def legval3d(x, y, z, c):
+ """
+ Evaluate 3D Legendre series at points (x,y,z).
+
+ This function returns the values:
+
+ ``p(x,y,z) = \sum_{i,j,k} c[i,j,k] * L_i(x) * L_j(y) * L_k(z)``
+
+ Parameters
+ ----------
+ x,y,z : array_like, algebra_like
+ The three dimensional Legendre seres is evaluated at the points
+ ``(x,y,z)``, where `x`, `y`, and `z` must have the same shape. If
+ any of `x`, `y`, or `z` is a list or tuple, it is first converted
+ to an ndarray. Otherwise it is left unchanged and if it isn't an
+ ndarray it is treated as a scalar. See `legval` for explanation of
+ algebra_like.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than 2 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The values of the three dimensional Legendre series at points formed
+ from triples of corresponding values from `x`, `y`, and `z`.
+
+ See Also
+ --------
+ legval, legval2d, leggrid2d, leggrid3d
+
+ """
+ return legval(z, legval2d(x, y, c), False)
+
+
+def leggrid3d(x, y, z, c):
+ """
+ Evaluate 3D Legendre series on the Cartesian product of x,y,z.
+
+ This function returns the values:
+
+ ``p(a,b,c) = \sum_{i,j,k} c[i,j,k] * L_i(a) * L_j(b) * L_k(c)``
+
+ where the points ``(a,b,c)`` consist of all triples formed by taking
+ ``a`` from `x`, ``b`` from `y`, and ``c`` from `z`. The resulting
+ points form a grid with `x` in the first dimension, `y` in the second,
+ and `z` in the third.
+
+ Parameters
+ ----------
+ x,y,z : array_like, algebra_like
+ The three dimensional Legendre seres is evaluated at the points
+ in the cartesian product of `x`, `y`, and `z`
+ ``(x,y,z)``, where `x` and `y` must have the same shape. If `x` or
+ `y` is a list or tuple, it is first converted to an ndarray,
+ otherwise it is left unchanged and treated as a scalar. See
+ `legval` for explanation of algebra_like.
+ c : array_like
+ Array of coefficients ordered so that the coefficients for terms of
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
+ greater than 2 the remaining indices enumerate multiple sets of
+ coefficients.
+
+ Returns
+ -------
+ values : ndarray, algebra_like
+ The values of the three dimensional Legendre series at points formed
+ from triples of corresponding values from `x`, `y`, and `z`.
+
+ See Also
+ --------
+ legval, legval2d, leggrid2d, legval3d
+
+ """
+ return legval(z, leggrid2d(x, y, c))
+
+
def legvander(x, deg) :
"""Vandermonde matrix of given degree.