summaryrefslogtreecommitdiff
path: root/numpy/polynomial/legendre.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/legendre.py')
-rw-r--r--numpy/polynomial/legendre.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py
index c7a1f2dd2..8d89c8412 100644
--- a/numpy/polynomial/legendre.py
+++ b/numpy/polynomial/legendre.py
@@ -92,7 +92,7 @@ from .polytemplate import polytemplate
__all__ = ['legzero', 'legone', 'legx', 'legdomain', 'legline',
'legadd', 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval',
'legder', 'legint', 'leg2poly', 'poly2leg', 'legfromroots',
- 'legvander', 'legfit', 'legtrim', 'legroots', 'Legendre','legval2d',
+ 'legvander', 'legfit', 'legtrim', 'legroots', 'Legendre', 'legval2d',
'legval3d', 'leggrid2d', 'leggrid3d', 'legvander2d', 'legvander3d',
'legcompanion', 'leggauss', 'legweight']
@@ -213,7 +213,7 @@ def leg2poly(c) :
#
# Legendre
-legdomain = np.array([-1,1])
+legdomain = np.array([-1, 1])
# Legendre coefficients representing zero.
legzero = np.array([0])
@@ -222,7 +222,7 @@ legzero = np.array([0])
legone = np.array([1])
# Legendre coefficients representing the identity x.
-legx = np.array([0,1])
+legx = np.array([0, 1])
def legline(off, scl) :
@@ -256,7 +256,7 @@ def legline(off, scl) :
"""
if scl != 0 :
- return np.array([off,scl])
+ return np.array([off, scl])
else :
return np.array([off])
@@ -1324,7 +1324,7 @@ def legvander2d(x, y, deg) :
vx = legvander(x, degx)
vy = legvander(y, degy)
- v = vx[..., None]*vy[..., None, :]
+ v = vx[..., None]*vy[..., None,:]
return v.reshape(v.shape[:-2] + (-1,))
@@ -1389,7 +1389,7 @@ def legvander3d(x, y, z, deg) :
vx = legvander(x, degx)
vy = legvander(y, degy)
vz = legvander(z, degz)
- v = vx[..., None, None]*vy[..., None, :, None]*vz[..., None, None, :]
+ v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:]
return v.reshape(v.shape[:-3] + (-1,))
@@ -1605,7 +1605,7 @@ def legcompanion(c):
bot = mat.reshape(-1)[n::n+1]
top[...] = np.arange(1, n)*scl[:n-1]*scl[1:n]
bot[...] = top
- mat[:,-1] -= (c[:-1]/c[-1])*(scl/scl[-1])*(n/(2*n - 1))
+ mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*(n/(2*n - 1))
return mat