summaryrefslogtreecommitdiff
path: root/numpy/polynomial/legendre.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/legendre.py')
-rw-r--r--numpy/polynomial/legendre.py40
1 files changed, 20 insertions, 20 deletions
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py
index be8410b82..1c42f4881 100644
--- a/numpy/polynomial/legendre.py
+++ b/numpy/polynomial/legendre.py
@@ -136,10 +136,10 @@ def poly2leg(pol):
>>> from numpy import polynomial as P
>>> p = P.Polynomial(np.arange(4))
>>> p
- Polynomial([ 0., 1., 2., 3.], [-1., 1.])
- >>> c = P.Legendre(P.poly2leg(p.coef))
+ Polynomial([ 0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ >>> c = P.Legendre(P.legendre.poly2leg(p.coef))
>>> c
- Legendre([ 1. , 3.25, 1. , 0.75], [-1., 1.])
+ Legendre([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1])
"""
[pol] = pu.as_series([pol])
@@ -742,7 +742,7 @@ def legder(c, m=1, scl=1, axis=0):
if cnt == 0:
return c
- c = np.rollaxis(c, iaxis)
+ c = np.moveaxis(c, iaxis, 0)
n = len(c)
if cnt >= n:
c = c[:1]*0
@@ -758,7 +758,7 @@ def legder(c, m=1, scl=1, axis=0):
der[1] = 3*c[2]
der[0] = c[1]
c = der
- c = np.rollaxis(c, 0, iaxis + 1)
+ c = np.moveaxis(c, 0, iaxis)
return c
@@ -822,7 +822,7 @@ def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
Note that the result of each integration is *multiplied* by `scl`.
Why is this important to note? Say one is making a linear change of
variable :math:`u = ax + b` in an integral relative to `x`. Then
- .. math::`dx = du/a`, so one will need to set `scl` equal to
+ :math:`dx = du/a`, so one will need to set `scl` equal to
:math:`1/a` - perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs
@@ -867,7 +867,7 @@ def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
if cnt == 0:
return c
- c = np.rollaxis(c, iaxis)
+ c = np.moveaxis(c, iaxis, 0)
k = list(k) + [0]*(cnt - len(k))
for i in range(cnt):
n = len(c)
@@ -886,7 +886,7 @@ def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
tmp[j - 1] -= t
tmp[0] += k[i] - legval(lbnd, tmp)
c = tmp
- c = np.rollaxis(c, 0, iaxis + 1)
+ c = np.moveaxis(c, 0, iaxis)
return c
@@ -1021,12 +1021,12 @@ def legval2d(x, y, c):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
"""
try:
x, y = np.array((x, y), copy=0)
- except:
+ except Exception:
raise ValueError('x, y are incompatible')
c = legval(x, c)
@@ -1081,7 +1081,7 @@ def leggrid2d(x, y, c):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
"""
c = legval(x, c)
@@ -1134,12 +1134,12 @@ def legval3d(x, y, z, c):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
"""
try:
x, y, z = np.array((x, y, z), copy=0)
- except:
+ except Exception:
raise ValueError('x, y, z are incompatible')
c = legval(x, c)
@@ -1198,7 +1198,7 @@ def leggrid3d(x, y, z, c):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
"""
c = legval(x, c)
@@ -1259,7 +1259,7 @@ def legvander(x, deg):
v[1] = x
for i in range(2, ideg + 1):
v[i] = (v[i-1]*x*(2*i - 1) - v[i-2]*(i - 1))/i
- return np.rollaxis(v, 0, v.ndim)
+ return np.moveaxis(v, 0, -1)
def legvander2d(x, y, deg):
@@ -1309,7 +1309,7 @@ def legvander2d(x, y, deg):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
"""
ideg = [int(d) for d in deg]
@@ -1373,7 +1373,7 @@ def legvander3d(x, y, z, deg):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
"""
ideg = [int(d) for d in deg]
@@ -1611,7 +1611,7 @@ def legcompanion(c):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
"""
# c is a trimmed copy
@@ -1712,7 +1712,7 @@ def leggauss(deg):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
The results have only been tested up to degree 100, higher degrees may
be problematic. The weights are determined by using the fact that
@@ -1777,7 +1777,7 @@ def legweight(x):
Notes
-----
- .. versionadded::1.7.0
+ .. versionadded:: 1.7.0
"""
w = x*0.0 + 1.0