summaryrefslogtreecommitdiff
path: root/numpy/polynomial/polynomial.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/polynomial.py')
-rw-r--r--numpy/polynomial/polynomial.py96
1 files changed, 6 insertions, 90 deletions
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py
index 8a2cffc15..44e1cbb3f 100644
--- a/numpy/polynomial/polynomial.py
+++ b/numpy/polynomial/polynomial.py
@@ -511,14 +511,10 @@ def polyder(c, m=1, scl=1, axis=0):
# astype fails with NA
c = c + 0.0
cdt = c.dtype
- cnt, iaxis = [int(t) for t in [m, axis]]
-
- if cnt != m:
- raise ValueError("The order of derivation must be integer")
+ cnt = pu._deprecate_as_int(m, "the order of derivation")
+ iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of derivation must be non-negative")
- if iaxis != axis:
- raise ValueError("The axis must be integer")
iaxis = normalize_axis_index(iaxis, c.ndim)
if cnt == 0:
@@ -625,10 +621,8 @@ def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
cdt = c.dtype
if not np.iterable(k):
k = [k]
- cnt, iaxis = [int(t) for t in [m, axis]]
-
- if cnt != m:
- raise ValueError("The order of integration must be integer")
+ cnt = pu._deprecate_as_int(m, "the order of integration")
+ iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of integration must be non-negative")
if len(k) > cnt:
@@ -637,8 +631,6 @@ def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
raise ValueError("lbnd must be a scalar.")
if np.ndim(scl) != 0:
raise ValueError("scl must be a scalar.")
- if iaxis != axis:
- raise ValueError("The axis must be integer")
iaxis = normalize_axis_index(iaxis, c.ndim)
if cnt == 0:
@@ -1095,9 +1087,7 @@ def polyvander(x, deg):
polyvander2d, polyvander3d
"""
- ideg = int(deg)
- if ideg != deg:
- raise ValueError("deg must be integer")
+ ideg = pu._deprecate_as_int(deg, "deg")
if ideg < 0:
raise ValueError("deg must be non-negative")
@@ -1358,81 +1348,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None):
0.50443316, 0.28853036]), 1.1324274851176597e-014]
"""
- x = np.asarray(x) + 0.0
- y = np.asarray(y) + 0.0
- deg = np.asarray(deg)
-
- # check arguments.
- if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
- raise TypeError("deg must be an int or non-empty 1-D array of int")
- if deg.min() < 0:
- raise ValueError("expected deg >= 0")
- if x.ndim != 1:
- raise TypeError("expected 1D vector for x")
- if x.size == 0:
- raise TypeError("expected non-empty vector for x")
- if y.ndim < 1 or y.ndim > 2:
- raise TypeError("expected 1D or 2D array for y")
- if len(x) != len(y):
- raise TypeError("expected x and y to have same length")
-
- if deg.ndim == 0:
- lmax = deg
- order = lmax + 1
- van = polyvander(x, lmax)
- else:
- deg = np.sort(deg)
- lmax = deg[-1]
- order = len(deg)
- van = polyvander(x, lmax)[:, deg]
-
- # set up the least squares matrices in transposed form
- lhs = van.T
- rhs = y.T
- if w is not None:
- w = np.asarray(w) + 0.0
- if w.ndim != 1:
- raise TypeError("expected 1D vector for w")
- if len(x) != len(w):
- raise TypeError("expected x and w to have same length")
- # apply weights. Don't use inplace operations as they
- # can cause problems with NA.
- lhs = lhs * w
- rhs = rhs * w
-
- # set rcond
- if rcond is None:
- rcond = len(x)*np.finfo(x.dtype).eps
-
- # Determine the norms of the design matrix columns.
- if issubclass(lhs.dtype.type, np.complexfloating):
- scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
- else:
- scl = np.sqrt(np.square(lhs).sum(1))
- scl[scl == 0] = 1
-
- # Solve the least squares problem.
- c, resids, rank, s = la.lstsq(lhs.T/scl, rhs.T, rcond)
- c = (c.T/scl).T
-
- # Expand c to include non-fitted coefficients which are set to zero
- if deg.ndim == 1:
- if c.ndim == 2:
- cc = np.zeros((lmax + 1, c.shape[1]), dtype=c.dtype)
- else:
- cc = np.zeros(lmax + 1, dtype=c.dtype)
- cc[deg] = c
- c = cc
-
- # warn on rank reduction
- if rank != order and not full:
- msg = "The fit may be poorly conditioned"
- warnings.warn(msg, pu.RankWarning, stacklevel=2)
-
- if full:
- return c, [resids, rank, s, rcond]
- else:
- return c
+ return pu._fit(polyvander, x, y, deg, rcond, full, w)
def polycompanion(c):