summaryrefslogtreecommitdiff
path: root/numpy/polynomial/polyutils.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial/polyutils.py')
-rw-r--r--numpy/polynomial/polyutils.py393
1 files changed, 391 insertions, 2 deletions
diff --git a/numpy/polynomial/polyutils.py b/numpy/polynomial/polyutils.py
index eff4a8ee1..5dcfa7a7a 100644
--- a/numpy/polynomial/polyutils.py
+++ b/numpy/polynomial/polyutils.py
@@ -45,6 +45,10 @@ Functions
"""
from __future__ import division, absolute_import, print_function
+import operator
+import functools
+import warnings
+
import numpy as np
__all__ = [
@@ -171,7 +175,7 @@ def as_series(alist, trim=True):
[array([2.]), array([1.1, 0. ])]
"""
- arrays = [np.array(a, ndmin=1, copy=0) for a in alist]
+ arrays = [np.array(a, ndmin=1, copy=False) for a in alist]
if min([a.size for a in arrays]) == 0:
raise ValueError("Coefficient array is empty")
if any([a.ndim != 1 for a in arrays]):
@@ -193,7 +197,7 @@ def as_series(alist, trim=True):
dtype = np.common_type(*arrays)
except Exception:
raise ValueError("Coefficient arrays have no common type")
- ret = [np.array(a, copy=1, dtype=dtype) for a in arrays]
+ ret = [np.array(a, copy=True, dtype=dtype) for a in arrays]
return ret
@@ -410,3 +414,388 @@ def mapdomain(x, old, new):
x = np.asanyarray(x)
off, scl = mapparms(old, new)
return off + scl*x
+
+
+def _nth_slice(i, ndim):
+ sl = [np.newaxis] * ndim
+ sl[i] = slice(None)
+ return tuple(sl)
+
+
+def _vander_nd(vander_fs, points, degrees):
+ r"""
+ A generalization of the Vandermonde matrix for N dimensions
+
+ The result is built by combining the results of 1d Vandermonde matrices,
+
+ .. math::
+ W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]}
+
+ where
+
+ .. math::
+ N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\
+ M &= \texttt{points[k].ndim} \\
+ V_k &= \texttt{vander\_fs[k]} \\
+ x_k &= \texttt{points[k]} \\
+ 0 \le j_k &\le \texttt{degrees[k]}
+
+ Expanding the one-dimensional :math:`V_k` functions gives:
+
+ .. math::
+ W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])}
+
+ where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along
+ dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`.
+
+ Parameters
+ ----------
+ vander_fs : Sequence[function(array_like, int) -> ndarray]
+ The 1d vander function to use for each axis, such as ``polyvander``
+ points : Sequence[array_like]
+ Arrays of point coordinates, all of the same shape. The dtypes
+ will be converted to either float64 or complex128 depending on
+ whether any of the elements are complex. Scalars are converted to
+ 1-D arrays.
+ This must be the same length as `vander_fs`.
+ degrees : Sequence[int]
+ The maximum degree (inclusive) to use for each axis.
+ This must be the same length as `vander_fs`.
+
+ Returns
+ -------
+ vander_nd : ndarray
+ An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``.
+ """
+ n_dims = len(vander_fs)
+ if n_dims != len(points):
+ raise ValueError(
+ "Expected {} dimensions of sample points, got {}".format(n_dims, len(points)))
+ if n_dims != len(degrees):
+ raise ValueError(
+ "Expected {} dimensions of degrees, got {}".format(n_dims, len(degrees)))
+ if n_dims == 0:
+ raise ValueError("Unable to guess a dtype or shape when no points are given")
+
+ # convert to the same shape and type
+ points = tuple(np.array(tuple(points), copy=False) + 0.0)
+
+ # produce the vandermonde matrix for each dimension, placing the last
+ # axis of each in an independent trailing axis of the output
+ vander_arrays = (
+ vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)]
+ for i in range(n_dims)
+ )
+
+ # we checked this wasn't empty already, so no `initial` needed
+ return functools.reduce(operator.mul, vander_arrays)
+
+
+def _vander_nd_flat(vander_fs, points, degrees):
+ """
+ Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis
+
+ Used to implement the public ``<type>vander<n>d`` functions.
+ """
+ v = _vander_nd(vander_fs, points, degrees)
+ return v.reshape(v.shape[:-len(degrees)] + (-1,))
+
+
+def _fromroots(line_f, mul_f, roots):
+ """
+ Helper function used to implement the ``<type>fromroots`` functions.
+
+ Parameters
+ ----------
+ line_f : function(float, float) -> ndarray
+ The ``<type>line`` function, such as ``polyline``
+ mul_f : function(array_like, array_like) -> ndarray
+ The ``<type>mul`` function, such as ``polymul``
+ roots :
+ See the ``<type>fromroots`` functions for more detail
+ """
+ if len(roots) == 0:
+ return np.ones(1)
+ else:
+ [roots] = as_series([roots], trim=False)
+ roots.sort()
+ p = [line_f(-r, 1) for r in roots]
+ n = len(p)
+ while n > 1:
+ m, r = divmod(n, 2)
+ tmp = [mul_f(p[i], p[i+m]) for i in range(m)]
+ if r:
+ tmp[0] = mul_f(tmp[0], p[-1])
+ p = tmp
+ n = m
+ return p[0]
+
+
+def _valnd(val_f, c, *args):
+ """
+ Helper function used to implement the ``<type>val<n>d`` functions.
+
+ Parameters
+ ----------
+ val_f : function(array_like, array_like, tensor: bool) -> array_like
+ The ``<type>val`` function, such as ``polyval``
+ c, args :
+ See the ``<type>val<n>d`` functions for more detail
+ """
+ try:
+ args = tuple(np.array(args, copy=False))
+ except Exception:
+ # preserve the old error message
+ if len(args) == 2:
+ raise ValueError('x, y, z are incompatible')
+ elif len(args) == 3:
+ raise ValueError('x, y are incompatible')
+ else:
+ raise ValueError('ordinates are incompatible')
+
+ it = iter(args)
+ x0 = next(it)
+
+ # use tensor on only the first
+ c = val_f(x0, c)
+ for xi in it:
+ c = val_f(xi, c, tensor=False)
+ return c
+
+
+def _gridnd(val_f, c, *args):
+ """
+ Helper function used to implement the ``<type>grid<n>d`` functions.
+
+ Parameters
+ ----------
+ val_f : function(array_like, array_like, tensor: bool) -> array_like
+ The ``<type>val`` function, such as ``polyval``
+ c, args :
+ See the ``<type>grid<n>d`` functions for more detail
+ """
+ for xi in args:
+ c = val_f(xi, c)
+ return c
+
+
+def _div(mul_f, c1, c2):
+ """
+ Helper function used to implement the ``<type>div`` functions.
+
+ Implementation uses repeated subtraction of c2 multiplied by the nth basis.
+ For some polynomial types, a more efficient approach may be possible.
+
+ Parameters
+ ----------
+ mul_f : function(array_like, array_like) -> array_like
+ The ``<type>mul`` function, such as ``polymul``
+ c1, c2 :
+ See the ``<type>div`` functions for more detail
+ """
+ # c1, c2 are trimmed copies
+ [c1, c2] = as_series([c1, c2])
+ if c2[-1] == 0:
+ raise ZeroDivisionError()
+
+ lc1 = len(c1)
+ lc2 = len(c2)
+ if lc1 < lc2:
+ return c1[:1]*0, c1
+ elif lc2 == 1:
+ return c1/c2[-1], c1[:1]*0
+ else:
+ quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
+ rem = c1
+ for i in range(lc1 - lc2, - 1, -1):
+ p = mul_f([0]*i + [1], c2)
+ q = rem[-1]/p[-1]
+ rem = rem[:-1] - q*p[:-1]
+ quo[i] = q
+ return quo, trimseq(rem)
+
+
+def _add(c1, c2):
+ """ Helper function used to implement the ``<type>add`` functions. """
+ # c1, c2 are trimmed copies
+ [c1, c2] = as_series([c1, c2])
+ if len(c1) > len(c2):
+ c1[:c2.size] += c2
+ ret = c1
+ else:
+ c2[:c1.size] += c1
+ ret = c2
+ return trimseq(ret)
+
+
+def _sub(c1, c2):
+ """ Helper function used to implement the ``<type>sub`` functions. """
+ # c1, c2 are trimmed copies
+ [c1, c2] = as_series([c1, c2])
+ if len(c1) > len(c2):
+ c1[:c2.size] -= c2
+ ret = c1
+ else:
+ c2 = -c2
+ c2[:c1.size] += c1
+ ret = c2
+ return trimseq(ret)
+
+
+def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None):
+ """
+ Helper function used to implement the ``<type>fit`` functions.
+
+ Parameters
+ ----------
+ vander_f : function(array_like, int) -> ndarray
+ The 1d vander function, such as ``polyvander``
+ c1, c2 :
+ See the ``<type>fit`` functions for more detail
+ """
+ x = np.asarray(x) + 0.0
+ y = np.asarray(y) + 0.0
+ deg = np.asarray(deg)
+
+ # check arguments.
+ if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
+ raise TypeError("deg must be an int or non-empty 1-D array of int")
+ if deg.min() < 0:
+ raise ValueError("expected deg >= 0")
+ if x.ndim != 1:
+ raise TypeError("expected 1D vector for x")
+ if x.size == 0:
+ raise TypeError("expected non-empty vector for x")
+ if y.ndim < 1 or y.ndim > 2:
+ raise TypeError("expected 1D or 2D array for y")
+ if len(x) != len(y):
+ raise TypeError("expected x and y to have same length")
+
+ if deg.ndim == 0:
+ lmax = deg
+ order = lmax + 1
+ van = vander_f(x, lmax)
+ else:
+ deg = np.sort(deg)
+ lmax = deg[-1]
+ order = len(deg)
+ van = vander_f(x, lmax)[:, deg]
+
+ # set up the least squares matrices in transposed form
+ lhs = van.T
+ rhs = y.T
+ if w is not None:
+ w = np.asarray(w) + 0.0
+ if w.ndim != 1:
+ raise TypeError("expected 1D vector for w")
+ if len(x) != len(w):
+ raise TypeError("expected x and w to have same length")
+ # apply weights. Don't use inplace operations as they
+ # can cause problems with NA.
+ lhs = lhs * w
+ rhs = rhs * w
+
+ # set rcond
+ if rcond is None:
+ rcond = len(x)*np.finfo(x.dtype).eps
+
+ # Determine the norms of the design matrix columns.
+ if issubclass(lhs.dtype.type, np.complexfloating):
+ scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
+ else:
+ scl = np.sqrt(np.square(lhs).sum(1))
+ scl[scl == 0] = 1
+
+ # Solve the least squares problem.
+ c, resids, rank, s = np.linalg.lstsq(lhs.T/scl, rhs.T, rcond)
+ c = (c.T/scl).T
+
+ # Expand c to include non-fitted coefficients which are set to zero
+ if deg.ndim > 0:
+ if c.ndim == 2:
+ cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype)
+ else:
+ cc = np.zeros(lmax+1, dtype=c.dtype)
+ cc[deg] = c
+ c = cc
+
+ # warn on rank reduction
+ if rank != order and not full:
+ msg = "The fit may be poorly conditioned"
+ warnings.warn(msg, RankWarning, stacklevel=2)
+
+ if full:
+ return c, [resids, rank, s, rcond]
+ else:
+ return c
+
+
+def _pow(mul_f, c, pow, maxpower):
+ """
+ Helper function used to implement the ``<type>pow`` functions.
+
+ Parameters
+ ----------
+ vander_f : function(array_like, int) -> ndarray
+ The 1d vander function, such as ``polyvander``
+ pow, maxpower :
+ See the ``<type>pow`` functions for more detail
+ mul_f : function(array_like, array_like) -> ndarray
+ The ``<type>mul`` function, such as ``polymul``
+ """
+ # c is a trimmed copy
+ [c] = as_series([c])
+ power = int(pow)
+ if power != pow or power < 0:
+ raise ValueError("Power must be a non-negative integer.")
+ elif maxpower is not None and power > maxpower:
+ raise ValueError("Power is too large")
+ elif power == 0:
+ return np.array([1], dtype=c.dtype)
+ elif power == 1:
+ return c
+ else:
+ # This can be made more efficient by using powers of two
+ # in the usual way.
+ prd = c
+ for i in range(2, power + 1):
+ prd = mul_f(prd, c)
+ return prd
+
+
+def _deprecate_as_int(x, desc):
+ """
+ Like `operator.index`, but emits a deprecation warning when passed a float
+
+ Parameters
+ ----------
+ x : int-like, or float with integral value
+ Value to interpret as an integer
+ desc : str
+ description to include in any error message
+
+ Raises
+ ------
+ TypeError : if x is a non-integral float or non-numeric
+ DeprecationWarning : if x is an integral float
+ """
+ try:
+ return operator.index(x)
+ except TypeError:
+ # Numpy 1.17.0, 2019-03-11
+ try:
+ ix = int(x)
+ except TypeError:
+ pass
+ else:
+ if ix == x:
+ warnings.warn(
+ "In future, this will raise TypeError, as {} will need to "
+ "be an integer not just an integral float."
+ .format(desc),
+ DeprecationWarning,
+ stacklevel=3
+ )
+ return ix
+
+ raise TypeError("{} must be an integer".format(desc))