summaryrefslogtreecommitdiff
path: root/numpy/polynomial
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/polynomial')
-rw-r--r--numpy/polynomial/chebyshev.py19
-rw-r--r--numpy/polynomial/legendre.py25
-rw-r--r--numpy/polynomial/polynomial.py10
-rw-r--r--numpy/polynomial/polytemplate.py52
4 files changed, 52 insertions, 54 deletions
diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py
index ea064a695..6b1edf497 100644
--- a/numpy/polynomial/chebyshev.py
+++ b/numpy/polynomial/chebyshev.py
@@ -23,6 +23,7 @@ Arithmetic
- `chebsub` -- subtract one Chebyshev series from another.
- `chebmul` -- multiply two Chebyshev series.
- `chebdiv` -- divide one Chebyshev series by another.
+- `chebpow` -- raise a Chebyshev series to an positive integer power
- `chebval` -- evaluate a Chebyshev series at given points.
Calculus
@@ -39,7 +40,7 @@ Misc Functions
- `chebpts1` -- Chebyshev points of the first kind.
- `chebpts2` -- Chebyshev points of the second kind.
- `chebtrim` -- trim leading coefficients from a Chebyshev series.
-- `chebline` -- Chebyshev series of given straight line.
+- `chebline` -- Chebyshev series representing given straight line.
- `cheb2poly` -- convert a Chebyshev series to a polynomial.
- `poly2cheb` -- convert a polynomial to a Chebyshev series.
@@ -78,10 +79,10 @@ References
from __future__ import division
__all__ = ['chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline',
- 'chebadd', 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebval',
- 'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots',
- 'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1',
- 'chebpts2', 'Chebyshev']
+ 'chebadd', 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow',
+ 'chebval', 'chebder', 'chebint', 'cheb2poly', 'poly2cheb',
+ 'chebfromroots', 'chebvander', 'chebfit', 'chebtrim', 'chebroots',
+ 'chebpts1', 'chebpts2', 'Chebyshev']
import numpy as np
import numpy.linalg as la
@@ -1344,12 +1345,12 @@ def chebpts1(npts):
Parameters
----------
- npts: int
+ npts : int
Number of sample points desired.
Returns
-------
- pts: ndarray
+ pts : ndarray
The Chebyshev points of the second kind.
Notes
@@ -1375,12 +1376,12 @@ def chebpts2(npts):
Parameters
----------
- npts: int
+ npts : int
Number of sample points desired.
Returns
-------
- pts: ndarray
+ pts : ndarray
The Chebyshev points of the second kind.
Notes
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py
index f09f3dc17..9aec256cd 100644
--- a/numpy/polynomial/legendre.py
+++ b/numpy/polynomial/legendre.py
@@ -21,6 +21,7 @@ Arithmetic
- `legsub` -- subtract one Legendre series from another.
- `legmul` -- multiply two Legendre series.
- `legdiv` -- divide one Legendre series by another.
+- `legpow` -- raise a Legendre series to an positive integer power
- `legval` -- evaluate a Legendre series at given points.
Calculus
@@ -35,7 +36,7 @@ Misc Functions
- `legvander` -- Vandermonde-like matrix for Legendre polynomials.
- `legfit` -- least-squares fit returning a Legendre series.
- `legtrim` -- trim leading coefficients from a Legendre series.
-- `legline` -- Legendre series of given straight line.
+- `legline` -- Legendre series representing given straight line.
- `leg2poly` -- convert a Legendre series to a polynomial.
- `poly2leg` -- convert a polynomial to a Legendre series.
@@ -51,9 +52,10 @@ See also
from __future__ import division
__all__ = ['legzero', 'legone', 'legx', 'legdomain', 'legline',
- 'legadd', 'legsub', 'legmulx', 'legmul', 'legdiv', 'legval',
- 'legder', 'legint', 'leg2poly', 'poly2leg', 'legfromroots',
- 'legvander', 'legfit', 'legtrim', 'legroots', 'Legendre']
+ 'legadd', 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow',
+ 'legval', 'legder', 'legint', 'leg2poly', 'poly2leg',
+ 'legfromroots', 'legvander', 'legfit', 'legtrim', 'legroots',
+ 'Legendre']
import numpy as np
import numpy.linalg as la
@@ -65,8 +67,6 @@ legtrim = pu.trimcoef
def poly2leg(pol) :
"""
- poly2leg(pol)
-
Convert a polynomial to a Legendre series.
Convert an array representing the coefficients of a polynomial (relative
@@ -463,7 +463,7 @@ def legmulx(cs):
.. math::
- xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)
+ xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1)
"""
# cs is a trimmed copy
@@ -564,12 +564,12 @@ def legdiv(c1, c2):
Parameters
----------
c1, c2 : array_like
- 1-d arrays of Legendre series coefficients ordered from low to
+ 1-D arrays of Legendre series coefficients ordered from low to
high.
Returns
-------
- [quo, rem] : ndarrays
+ quo, rem : ndarrays
Of Legendre series coefficients representing the quotient and
remainder.
@@ -683,8 +683,8 @@ def legder(cs, m=1, scl=1) :
Parameters
----------
- cs: array_like
- 1-d array of Legendre series coefficients ordered from low to high.
+ cs : array_like
+ 1-D array of Legendre series coefficients ordered from low to high.
m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
@@ -887,9 +887,6 @@ def legval(x, cs):
--------
legfit
- Examples
- --------
-
Notes
-----
The evaluation uses Clenshaw recursion, aka synthetic division.
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py
index 6b5b7be98..3efe25920 100644
--- a/numpy/polynomial/polynomial.py
+++ b/numpy/polynomial/polynomial.py
@@ -20,6 +20,7 @@ Arithmetic
- `polysub` -- subtract one polynomial from another.
- `polymul` -- multiply two polynomials.
- `polydiv` -- divide one polynomial by another.
+- `polypow` -- raise a polynomial to an positive integer power
- `polyval` -- evaluate a polynomial at given points.
Calculus
@@ -34,8 +35,7 @@ Misc Functions
- `polyvander` -- Vandermonde-like matrix for powers.
- `polyfit` -- least-squares fit returning a polynomial.
- `polytrim` -- trim leading coefficients from a polynomial.
-- `polyline` -- Given a straight line, return the equivalent polynomial
- object.
+- `polyline` -- polynomial representing given straight line.
Classes
-------
@@ -49,9 +49,9 @@ See also
from __future__ import division
__all__ = ['polyzero', 'polyone', 'polyx', 'polydomain', 'polyline',
- 'polyadd', 'polysub', 'polymulx', 'polymul', 'polydiv', 'polyval',
- 'polyder', 'polyint', 'polyfromroots', 'polyvander', 'polyfit',
- 'polytrim', 'polyroots', 'Polynomial']
+ 'polyadd', 'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow',
+ 'polyval', 'polyder', 'polyint', 'polyfromroots', 'polyvander',
+ 'polyfit', 'polytrim', 'polyroots', 'Polynomial']
import numpy as np
import numpy.linalg as la
diff --git a/numpy/polynomial/polytemplate.py b/numpy/polynomial/polytemplate.py
index 37f0018d0..2106ad84e 100644
--- a/numpy/polynomial/polytemplate.py
+++ b/numpy/polynomial/polytemplate.py
@@ -345,12 +345,12 @@ class $name(pu.PolyBase) :
Parameters
----------
- domain : {None, array_like}
- The domain of the new series type instance. If the value is is
- ``None``, then the default domain of `kind` is used.
- kind : {None, class}
+ domain : array_like, optional
+ The domain of the new series type instance. If the value is None,
+ then the default domain of `kind` is used.
+ kind : class, optional
The polynomial series type class to which the current instance
- should be converted. If kind is ``None``, then the class of the
+ should be converted. If kind is None, then the class of the
current instance is used.
Returns
@@ -359,14 +359,14 @@ class $name(pu.PolyBase) :
The returned class can be of different type than the current
instance and/or have a different domain.
- Examples
- --------
-
Notes
-----
Conversion between domains and class types can result in
numerically ill defined series.
+ Examples
+ --------
+
"""
if kind is None :
kind = $name
@@ -390,11 +390,11 @@ class $name(pu.PolyBase) :
off, scl : floats or complex
The mapping function is defined by ``off + scl*x``.
- Notes:
- ------
+ Notes
+ -----
If the current domain is the interval ``[l_1, r_1]`` and the default
interval is ``[l_2, r_2]``, then the linear mapping function ``L`` is
- defined by the equations:
+ defined by the equations::
L(l_1) = l_2
L(r_1) = r_2
@@ -491,8 +491,8 @@ class $name(pu.PolyBase) :
See Also
--------
- `${nick}int` : similar function.
- `${nick}der` : similar function for derivative.
+ ${nick}int : similar function.
+ ${nick}der : similar function for derivative.
"""
off, scl = self.mapparms()
@@ -521,8 +521,8 @@ class $name(pu.PolyBase) :
See Also
--------
- `${nick}der` : similar function.
- `${nick}int` : similar function for integration.
+ ${nick}der : similar function.
+ ${nick}int : similar function for integration.
"""
off, scl = self.mapparms()
@@ -538,8 +538,8 @@ class $name(pu.PolyBase) :
See Also
--------
- `${nick}roots` : similar function
- `${nick}fromroots` : function to go generate series from roots.
+ ${nick}roots : similar function
+ ${nick}fromroots : function to go generate series from roots.
"""
roots = ${nick}roots(self.coef)
@@ -552,8 +552,8 @@ class $name(pu.PolyBase) :
Here y is the value of the polynomial at the points x. This is
intended as a plotting aid.
- Paramters
- ---------
+ Parameters
+ ----------
n : int, optional
Number of point pairs to return. The default value is 100.
@@ -577,9 +577,9 @@ class $name(pu.PolyBase) :
"""Least squares fit to data.
Return a `$name` instance that is the least squares fit to the data
- `y` sampled at `x`. Unlike ${nick}fit, the domain of the returned
+ `y` sampled at `x`. Unlike `${nick}fit`, the domain of the returned
instance can be specified and this will often result in a superior
- fit with less chance of ill conditioning. See ${nick}fit for full
+ fit with less chance of ill conditioning. See `${nick}fit` for full
documentation of the implementation.
Parameters
@@ -591,7 +591,7 @@ class $name(pu.PolyBase) :
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.
deg : int
- Degree of the fitting polynomial
+ Degree of the fitting polynomial.
domain : {None, [beg, end], []}, optional
Domain to use for the returned $name instance. If ``None``,
then a minimal domain that covers the points `x` is chosen. If
@@ -671,14 +671,14 @@ class $name(pu.PolyBase) :
If ``p`` is the returned $name object, then ``p(x) == x`` for all
values of x.
- Parameters:
- -----------
+ Parameters
+ ----------
domain : array_like
The resulting array must be if the form ``[beg, end]``, where
``beg`` and ``end`` are the endpoints of the domain.
- Returns:
- --------
+ Returns
+ -------
identity : $name object
"""