diff options
Diffstat (limited to 'numpy/random/_bounded_integers.pyx.in')
-rw-r--r-- | numpy/random/_bounded_integers.pyx.in | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/numpy/random/_bounded_integers.pyx.in b/numpy/random/_bounded_integers.pyx.in new file mode 100644 index 000000000..47cb13b3a --- /dev/null +++ b/numpy/random/_bounded_integers.pyx.in @@ -0,0 +1,347 @@ +#!python +#cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True + +import numpy as np +cimport numpy as np + +__all__ = [] + +np.import_array() + +cdef extern from "include/distributions.h": + # Generate random numbers in closed interval [off, off + rng]. + uint64_t random_bounded_uint64(bitgen_t *bitgen_state, + uint64_t off, uint64_t rng, + uint64_t mask, bint use_masked) nogil + uint32_t random_buffered_bounded_uint32(bitgen_t *bitgen_state, + uint32_t off, uint32_t rng, + uint32_t mask, bint use_masked, + int *bcnt, uint32_t *buf) nogil + uint16_t random_buffered_bounded_uint16(bitgen_t *bitgen_state, + uint16_t off, uint16_t rng, + uint16_t mask, bint use_masked, + int *bcnt, uint32_t *buf) nogil + uint8_t random_buffered_bounded_uint8(bitgen_t *bitgen_state, + uint8_t off, uint8_t rng, + uint8_t mask, bint use_masked, + int *bcnt, uint32_t *buf) nogil + np.npy_bool random_buffered_bounded_bool(bitgen_t *bitgen_state, + np.npy_bool off, np.npy_bool rng, + np.npy_bool mask, bint use_masked, + int *bcnt, uint32_t *buf) nogil + void random_bounded_uint64_fill(bitgen_t *bitgen_state, + uint64_t off, uint64_t rng, np.npy_intp cnt, + bint use_masked, + uint64_t *out) nogil + void random_bounded_uint32_fill(bitgen_t *bitgen_state, + uint32_t off, uint32_t rng, np.npy_intp cnt, + bint use_masked, + uint32_t *out) nogil + void random_bounded_uint16_fill(bitgen_t *bitgen_state, + uint16_t off, uint16_t rng, np.npy_intp cnt, + bint use_masked, + uint16_t *out) nogil + void random_bounded_uint8_fill(bitgen_t *bitgen_state, + uint8_t off, uint8_t rng, np.npy_intp cnt, + bint use_masked, + uint8_t *out) nogil + void random_bounded_bool_fill(bitgen_t *bitgen_state, + np.npy_bool off, np.npy_bool rng, np.npy_intp cnt, + bint use_masked, + np.npy_bool *out) nogil + + + +_integers_types = {'bool': (0, 2), + 'int8': (-2**7, 2**7), + 'int16': (-2**15, 2**15), + 'int32': (-2**31, 2**31), + 'int64': (-2**63, 2**63), + 'uint8': (0, 2**8), + 'uint16': (0, 2**16), + 'uint32': (0, 2**32), + 'uint64': (0, 2**64)} +{{ +py: +type_info = (('uint32', 'uint32', 'uint64', 'NPY_UINT64', 0, 0, 0, '0X100000000ULL'), + ('uint16', 'uint16', 'uint32', 'NPY_UINT32', 1, 16, 0, '0X10000UL'), + ('uint8', 'uint8', 'uint16', 'NPY_UINT16', 3, 8, 0, '0X100UL'), + ('bool','bool', 'uint8', 'NPY_UINT8', 31, 1, 0, '0x2UL'), + ('int32', 'uint32', 'uint64', 'NPY_INT64', 0, 0, '-0x80000000LL', '0x80000000LL'), + ('int16', 'uint16', 'uint32', 'NPY_INT32', 1, 16, '-0x8000LL', '0x8000LL' ), + ('int8', 'uint8', 'uint16', 'NPY_INT16', 3, 8, '-0x80LL', '0x80LL' ), +)}} +{{for nptype, utype, nptype_up, npctype, remaining, bitshift, lb, ub in type_info}} +{{ py: otype = nptype + '_' if nptype == 'bool' else nptype }} +cdef object _rand_{{nptype}}_broadcast(np.ndarray low, np.ndarray high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for smaller integer types + + This path is simpler since the high value in the open interval [low, high) + must be in-range for the next larger type, {{nptype_up}}. Here we case to + this type for checking and the recast to {{nptype}} when producing the + random integers. + """ + cdef {{utype}}_t rng, last_rng, off, val, mask, out_val, is_open + cdef uint32_t buf + cdef {{utype}}_t *out_data + cdef {{nptype_up}}_t low_v, high_v + cdef np.ndarray low_arr, high_arr, out_arr + cdef np.npy_intp i, cnt + cdef np.broadcast it + cdef int buf_rem = 0 + + # Array path + is_open = not closed + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + if np.any(np.less(low_arr, {{lb}})): + raise ValueError('low is out of bounds for {{nptype}}') + if closed: + high_comp = np.greater_equal + low_high_comp = np.greater + else: + high_comp = np.greater + low_high_comp = np.greater_equal + + if np.any(high_comp(high_arr, {{ub}})): + raise ValueError('high is out of bounds for {{nptype}}') + if np.any(low_high_comp(low_arr, high_arr)): + comp = '>' if closed else '>=' + raise ValueError('low {comp} high'.format(comp=comp)) + + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.{{npctype}}, np.NPY_ALIGNED | np.NPY_FORCECAST) + high_arr = <np.ndarray>np.PyArray_FROM_OTF(high, np.{{npctype}}, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.{{otype}}) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.{{otype}}) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <{{utype}}_t *>np.PyArray_DATA(out_arr) + cnt = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(cnt): + low_v = (<{{nptype_up}}_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<{{nptype_up}}_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Subtract 1 since generator produces values on the closed int [off, off+rng] + rng = <{{utype}}_t>((high_v - is_open) - low_v) + off = <{{utype}}_t>(<{{nptype_up}}_t>low_v) + + if rng != last_rng: + # Smallest bit mask >= max + mask = <{{utype}}_t>_gen_mask(rng) + + out_data[i] = random_buffered_bounded_{{utype}}(state, off, rng, mask, use_masked, &buf_rem, &buf) + + np.PyArray_MultiIter_NEXT(it) + return out_arr +{{endfor}} +{{ +py: +big_type_info = (('uint64', 'uint64', 'NPY_UINT64', '0x0ULL', '0xFFFFFFFFFFFFFFFFULL'), + ('int64', 'uint64', 'NPY_INT64', '-0x8000000000000000LL', '0x7FFFFFFFFFFFFFFFLL' ) +)}} +{{for nptype, utype, npctype, lb, ub in big_type_info}} +{{ py: otype = nptype}} +cdef object _rand_{{nptype}}_broadcast(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + Array path for 64-bit integer types + + Requires special treatment since the high value can be out-of-range for + the largest (64 bit) integer type since the generator is specified on the + interval [low,high). + + The internal generator does not have this issue since it generates from + the closes interval [low, high-1] and high-1 is always in range for the + 64 bit integer type. + """ + + cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr + cdef np.npy_intp i, cnt, n + cdef np.broadcast it + cdef object closed_upper + cdef uint64_t *out_data + cdef {{nptype}}_t *highm1_data + cdef {{nptype}}_t low_v, high_v + cdef uint64_t rng, last_rng, val, mask, off, out_val + + low_arr = <np.ndarray>low + high_arr = <np.ndarray>high + + if np.any(np.less(low_arr, {{lb}})): + raise ValueError('low is out of bounds for {{nptype}}') + dt = high_arr.dtype + if closed or np.issubdtype(dt, np.integer): + # Avoid object dtype path if already an integer + high_lower_comp = np.less if closed else np.less_equal + if np.any(high_lower_comp(high_arr, {{lb}})): + comp = '>' if closed else '>=' + raise ValueError('low {comp} high'.format(comp=comp)) + high_m1 = high_arr if closed else high_arr - dt.type(1) + if np.any(np.greater(high_m1, {{ub}})): + raise ValueError('high is out of bounds for {{nptype}}') + highm1_arr = <np.ndarray>np.PyArray_FROM_OTF(high_m1, np.{{npctype}}, np.NPY_ALIGNED | np.NPY_FORCECAST) + else: + # If input is object or a floating type + highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.{{nptype}}) + highm1_data = <{{nptype}}_t *>np.PyArray_DATA(highm1_arr) + cnt = np.PyArray_SIZE(high_arr) + flat = high_arr.flat + for i in range(cnt): + # Subtract 1 since generator produces values on the closed int [off, off+rng] + closed_upper = int(flat[i]) - 1 + if closed_upper > {{ub}}: + raise ValueError('high is out of bounds for {{nptype}}') + if closed_upper < {{lb}}: + comp = '>' if closed else '>=' + raise ValueError('low {comp} high'.format(comp=comp)) + highm1_data[i] = <{{nptype}}_t>closed_upper + + if np.any(np.greater(low_arr, highm1_arr)): + comp = '>' if closed else '>=' + raise ValueError('low {comp} high'.format(comp=comp)) + + high_arr = highm1_arr + low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.{{npctype}}, np.NPY_ALIGNED | np.NPY_FORCECAST) + + if size is not None: + out_arr = <np.ndarray>np.empty(size, np.{{nptype}}) + else: + it = np.PyArray_MultiIterNew2(low_arr, high_arr) + out_arr = <np.ndarray>np.empty(it.shape, np.{{nptype}}) + + it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr) + out_data = <uint64_t *>np.PyArray_DATA(out_arr) + n = np.PyArray_SIZE(out_arr) + mask = last_rng = 0 + with lock, nogil: + for i in range(n): + low_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 0))[0] + high_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 1))[0] + # Generator produces values on the closed int [off, off+rng], -1 subtracted above + rng = <{{utype}}_t>(high_v - low_v) + off = <{{utype}}_t>(<{{nptype}}_t>low_v) + + if rng != last_rng: + mask = _gen_mask(rng) + out_data[i] = random_bounded_uint64(state, off, rng, mask, use_masked) + + np.PyArray_MultiIter_NEXT(it) + + return out_arr +{{endfor}} +{{ +py: +type_info = (('uint64', 'uint64', '0x0ULL', '0xFFFFFFFFFFFFFFFFULL'), + ('uint32', 'uint32', '0x0UL', '0XFFFFFFFFUL'), + ('uint16', 'uint16', '0x0UL', '0XFFFFUL'), + ('uint8', 'uint8', '0x0UL', '0XFFUL'), + ('bool', 'bool', '0x0UL', '0x1UL'), + ('int64', 'uint64', '-0x8000000000000000LL', '0x7FFFFFFFFFFFFFFFL'), + ('int32', 'uint32', '-0x80000000L', '0x7FFFFFFFL'), + ('int16', 'uint16', '-0x8000L', '0x7FFFL' ), + ('int8', 'uint8', '-0x80L', '0x7FL' ) +)}} +{{for nptype, utype, lb, ub in type_info}} +{{ py: otype = nptype + '_' if nptype == 'bool' else nptype }} +cdef object _rand_{{nptype}}(object low, object high, object size, + bint use_masked, bint closed, + bitgen_t *state, object lock): + """ + _rand_{{nptype}}(low, high, size, use_masked, *state, lock) + + Return random np.{{nptype}} integers from `low` (inclusive) to `high` (exclusive). + + Return random integers from the "discrete uniform" distribution in the + interval [`low`, `high`). If `high` is None (the default), + then results are from [0, `low`). On entry the arguments are presumed + to have been validated for size and order for the np.{{nptype}} type. + + Parameters + ---------- + low : int or array-like + Lowest (signed) integer to be drawn from the distribution (unless + ``high=None``, in which case this parameter is the *highest* such + integer). + high : int or array-like + If provided, one above the largest (signed) integer to be drawn from the + distribution (see above for behavior if ``high=None``). + size : int or tuple of ints + Output shape. If the given shape is, e.g., ``(m, n, k)``, then + ``m * n * k`` samples are drawn. Default is None, in which case a + single value is returned. + use_masked : bool + If True then rejection sampling with a range mask is used else Lemire's algorithm is used. + closed : bool + If True then sample from [low, high]. If False, sample [low, high) + state : bit generator + Bit generator state to use in the core random number generators + lock : threading.Lock + Lock to prevent multiple using a single generator simultaneously + + Returns + ------- + out : python scalar or ndarray of np.{{nptype}} + `size`-shaped array of random integers from the appropriate + distribution, or a single such random int if `size` not provided. + + Notes + ----- + The internal integer generator produces values from the closed + interval [low, high-(not closed)]. This requires some care since + high can be out-of-range for {{utype}}. The scalar path leaves + integers as Python integers until the 1 has been subtracted to + avoid needing to cast to a larger type. + """ + cdef np.ndarray out_arr, low_arr, high_arr + cdef {{utype}}_t rng, off, out_val + cdef {{utype}}_t *out_data + cdef np.npy_intp i, n, cnt + + if size is not None: + if (np.prod(size) == 0): + return np.empty(size, dtype=np.{{nptype}}) + + low_arr = <np.ndarray>np.array(low, copy=False) + high_arr = <np.ndarray>np.array(high, copy=False) + low_ndim = np.PyArray_NDIM(low_arr) + high_ndim = np.PyArray_NDIM(high_arr) + if ((low_ndim == 0 or (low_ndim == 1 and low_arr.size == 1 and size is not None)) and + (high_ndim == 0 or (high_ndim == 1 and high_arr.size == 1 and size is not None))): + low = int(low_arr) + high = int(high_arr) + # Subtract 1 since internal generator produces on closed interval [low, high] + if not closed: + high -= 1 + + if low < {{lb}}: + raise ValueError("low is out of bounds for {{nptype}}") + if high > {{ub}}: + raise ValueError("high is out of bounds for {{nptype}}") + if low > high: # -1 already subtracted, closed interval + comp = '>' if closed else '>=' + raise ValueError('low {comp} high'.format(comp=comp)) + + rng = <{{utype}}_t>(high - low) + off = <{{utype}}_t>(<{{nptype}}_t>low) + if size is None: + with lock: + random_bounded_{{utype}}_fill(state, off, rng, 1, use_masked, &out_val) + return np.{{otype}}(<{{nptype}}_t>out_val) + else: + out_arr = <np.ndarray>np.empty(size, np.{{nptype}}) + cnt = np.PyArray_SIZE(out_arr) + out_data = <{{utype}}_t *>np.PyArray_DATA(out_arr) + with lock, nogil: + random_bounded_{{utype}}_fill(state, off, rng, cnt, use_masked, out_data) + return out_arr + return _rand_{{nptype}}_broadcast(low_arr, high_arr, size, use_masked, closed, state, lock) +{{endfor}} |