summaryrefslogtreecommitdiff
path: root/numpy/random/mtrand/mtrand.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/random/mtrand/mtrand.pyx')
-rw-r--r--numpy/random/mtrand/mtrand.pyx7
1 files changed, 0 insertions, 7 deletions
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx
index 2a6daa88c..134bc2e09 100644
--- a/numpy/random/mtrand/mtrand.pyx
+++ b/numpy/random/mtrand/mtrand.pyx
@@ -2168,7 +2168,6 @@ cdef class RandomState:
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
- >>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
@@ -2447,7 +2446,6 @@ cdef class RandomState:
--------
Draw samples and plot the distribution:
- >>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
@@ -3285,7 +3283,6 @@ cdef class RandomState:
>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
- >>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=50)
@@ -3487,7 +3484,6 @@ cdef class RandomState:
--------
Draw values from the distribution and plot the histogram
- >>> import matplotlib
>>> from matplotlib.pyplot import hist
>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)
@@ -4243,7 +4239,6 @@ cdef class RandomState:
>>> ngood, nbad, nsamp = 100, 2, 10
# number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
- >>> import matplotlib
>>> from matplotlib.pyplot import hist
>>> hist(s)
# note that it is very unlikely to grab both bad items
@@ -4354,7 +4349,6 @@ cdef class RandomState:
>>> a = .6
>>> s = np.random.logseries(a, 10000)
- >>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s)
@@ -4736,7 +4730,6 @@ cdef class RandomState:
>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()
- >>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')