summaryrefslogtreecommitdiff
path: root/numpy/random/tests/test_random.py
diff options
context:
space:
mode:
Diffstat (limited to 'numpy/random/tests/test_random.py')
-rw-r--r--numpy/random/tests/test_random.py344
1 files changed, 179 insertions, 165 deletions
diff --git a/numpy/random/tests/test_random.py b/numpy/random/tests/test_random.py
index b64c9d6cd..897a8e6f0 100644
--- a/numpy/random/tests/test_random.py
+++ b/numpy/random/tests/test_random.py
@@ -6,6 +6,7 @@ from numpy.testing import (
assert_warns)
from numpy import random
from numpy.compat import asbytes
+import sys
class TestSeed(TestCase):
def test_scalar(self):
@@ -60,7 +61,7 @@ class TestMultinomial(TestCase):
random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
def test_int_negative_interval(self):
- assert_( -5 <= random.randint(-5, -1) < -1)
+ assert_(-5 <= random.randint(-5, -1) < -1)
x = random.randint(-5, -1, 5)
assert_(np.all(-5 <= x))
assert_(np.all(x < -1))
@@ -68,15 +69,15 @@ class TestMultinomial(TestCase):
def test_size(self):
# gh-3173
p = [0.5, 0.5]
- assert_equal(np.random.multinomial(1 ,p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.multinomial(1 ,p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.multinomial(1 ,p, np.uint32(1)).shape, (1, 2))
- assert_equal(np.random.multinomial(1 ,p, [2, 2]).shape, (2, 2, 2))
- assert_equal(np.random.multinomial(1 ,p, (2, 2)).shape, (2, 2, 2))
- assert_equal(np.random.multinomial(1 ,p, np.array((2, 2))).shape,
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
+ assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
+ assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
+ assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape,
(2, 2, 2))
- assert_raises(TypeError, np.random.multinomial, 1 , p,
+ assert_raises(TypeError, np.random.multinomial, 1, p,
np.float(1))
@@ -93,17 +94,16 @@ class TestSetState(TestCase):
assert_(np.all(old == new))
def test_gaussian_reset(self):
- """ Make sure the cached every-other-Gaussian is reset.
- """
+ # Make sure the cached every-other-Gaussian is reset.
old = self.prng.standard_normal(size=3)
self.prng.set_state(self.state)
new = self.prng.standard_normal(size=3)
assert_(np.all(old == new))
def test_gaussian_reset_in_media_res(self):
- """ When the state is saved with a cached Gaussian, make sure the cached
- Gaussian is restored.
- """
+ # When the state is saved with a cached Gaussian, make sure the
+ # cached Gaussian is restored.
+
self.prng.standard_normal()
state = self.prng.get_state()
old = self.prng.standard_normal(size=3)
@@ -112,9 +112,8 @@ class TestSetState(TestCase):
assert_(np.all(old == new))
def test_backwards_compatibility(self):
- """ Make sure we can accept old state tuples that do not have the cached
- Gaussian value.
- """
+ # Make sure we can accept old state tuples that do not have the
+ # cached Gaussian value.
old_state = self.state[:-2]
x1 = self.prng.standard_normal(size=16)
self.prng.set_state(old_state)
@@ -125,56 +124,55 @@ class TestSetState(TestCase):
assert_(np.all(x1 == x3))
def test_negative_binomial(self):
- """ Ensure that the negative binomial results take floating point
- arguments without truncation.
- """
+ # Ensure that the negative binomial results take floating point
+ # arguments without truncation.
self.prng.negative_binomial(0.5, 0.5)
class TestRandomDist(TestCase):
- """ Make sure the random distrobution return the correct value for a
- given seed
- """
+ # Make sure the random distrobution return the correct value for a
+ # given seed
+
def setUp(self):
self.seed = 1234567890
def test_rand(self):
np.random.seed(self.seed)
actual = np.random.rand(3, 2)
- desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
- [ 0.88868358904449662, 0.89165480011560816],
- [ 0.4575674820298663, 0.7781880808593471 ]])
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
+ [0.88868358904449662, 0.89165480011560816],
+ [0.4575674820298663, 0.7781880808593471]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_randn(self):
np.random.seed(self.seed)
actual = np.random.randn(3, 2)
- desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
- [ 1.498988344300628, -0.2286433324536169 ],
- [ 2.031033998682787, 2.17032494605655257]])
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
+ [1.498988344300628, -0.2286433324536169],
+ [2.031033998682787, 2.17032494605655257]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_randint(self):
np.random.seed(self.seed)
actual = np.random.randint(-99, 99, size=(3, 2))
- desired = np.array([[ 31, 3],
- [-52, 41],
- [-48, -66]])
+ desired = np.array([[31, 3],
+ [-52, 41],
+ [-48, -66]])
np.testing.assert_array_equal(actual, desired)
def test_random_integers(self):
np.random.seed(self.seed)
actual = np.random.random_integers(-99, 99, size=(3, 2))
- desired = np.array([[ 31, 3],
- [-52, 41],
- [-48, -66]])
+ desired = np.array([[31, 3],
+ [-52, 41],
+ [-48, -66]])
np.testing.assert_array_equal(actual, desired)
def test_random_sample(self):
np.random.seed(self.seed)
actual = np.random.random_sample((3, 2))
- desired = np.array([[ 0.61879477158567997, 0.59162362775974664],
- [ 0.88868358904449662, 0.89165480011560816],
- [ 0.4575674820298663, 0.7781880808593471 ]])
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
+ [0.88868358904449662, 0.89165480011560816],
+ [0.4575674820298663, 0.7781880808593471]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_choice_uniform_replace(self):
@@ -304,9 +302,10 @@ class TestRandomDist(TestCase):
def test_beta(self):
np.random.seed(self.seed)
actual = np.random.beta(.1, .9, size=(3, 2))
- desired = np.array([[ 1.45341850513746058e-02, 5.31297615662868145e-04],
- [ 1.85366619058432324e-06, 4.19214516800110563e-03],
- [ 1.58405155108498093e-04, 1.26252891949397652e-04]])
+ desired = np.array(
+ [[1.45341850513746058e-02, 5.31297615662868145e-04],
+ [1.85366619058432324e-06, 4.19214516800110563e-03],
+ [1.58405155108498093e-04, 1.26252891949397652e-04]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_binomial(self):
@@ -320,26 +319,26 @@ class TestRandomDist(TestCase):
def test_chisquare(self):
np.random.seed(self.seed)
actual = np.random.chisquare(50, size=(3, 2))
- desired = np.array([[ 63.87858175501090585, 68.68407748911370447],
- [ 65.77116116901505904, 47.09686762438974483],
- [ 72.3828403199695174, 74.18408615260374006]])
+ desired = np.array([[63.87858175501090585, 68.68407748911370447],
+ [65.77116116901505904, 47.09686762438974483],
+ [72.3828403199695174, 74.18408615260374006]])
np.testing.assert_array_almost_equal(actual, desired, decimal=13)
def test_dirichlet(self):
np.random.seed(self.seed)
- alpha = np.array([51.72840233779265162, 39.74494232180943953])
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
- desired = np.array([[[ 0.54539444573611562, 0.45460555426388438],
- [ 0.62345816822039413, 0.37654183177960598]],
- [[ 0.55206000085785778, 0.44793999914214233],
- [ 0.58964023305154301, 0.41035976694845688]],
- [[ 0.59266909280647828, 0.40733090719352177],
- [ 0.56974431743975207, 0.43025568256024799]]])
+ desired = np.array([[[0.54539444573611562, 0.45460555426388438],
+ [0.62345816822039413, 0.37654183177960598]],
+ [[0.55206000085785778, 0.44793999914214233],
+ [0.58964023305154301, 0.41035976694845688]],
+ [[0.59266909280647828, 0.40733090719352177],
+ [0.56974431743975207, 0.43025568256024799]]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_dirichlet_size(self):
# gh-3173
- p = np.array([51.72840233779265162, 39.74494232180943953])
+ p = np.array([51.72840233779265162, 39.74494232180943953])
assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
@@ -352,49 +351,49 @@ class TestRandomDist(TestCase):
def test_exponential(self):
np.random.seed(self.seed)
actual = np.random.exponential(1.1234, size=(3, 2))
- desired = np.array([[ 1.08342649775011624, 1.00607889924557314],
- [ 2.46628830085216721, 2.49668106809923884],
- [ 0.68717433461363442, 1.69175666993575979]])
+ desired = np.array([[1.08342649775011624, 1.00607889924557314],
+ [2.46628830085216721, 2.49668106809923884],
+ [0.68717433461363442, 1.69175666993575979]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_f(self):
np.random.seed(self.seed)
actual = np.random.f(12, 77, size=(3, 2))
- desired = np.array([[ 1.21975394418575878, 1.75135759791559775],
- [ 1.44803115017146489, 1.22108959480396262],
- [ 1.02176975757740629, 1.34431827623300415]])
+ desired = np.array([[1.21975394418575878, 1.75135759791559775],
+ [1.44803115017146489, 1.22108959480396262],
+ [1.02176975757740629, 1.34431827623300415]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_gamma(self):
np.random.seed(self.seed)
actual = np.random.gamma(5, 3, size=(3, 2))
- desired = np.array([[ 24.60509188649287182, 28.54993563207210627],
- [ 26.13476110204064184, 12.56988482927716078],
- [ 31.71863275789960568, 33.30143302795922011]])
+ desired = np.array([[24.60509188649287182, 28.54993563207210627],
+ [26.13476110204064184, 12.56988482927716078],
+ [31.71863275789960568, 33.30143302795922011]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_geometric(self):
np.random.seed(self.seed)
actual = np.random.geometric(.123456789, size=(3, 2))
- desired = np.array([[ 8, 7],
- [17, 17],
- [ 5, 12]])
+ desired = np.array([[8, 7],
+ [17, 17],
+ [5, 12]])
np.testing.assert_array_equal(actual, desired)
def test_gumbel(self):
np.random.seed(self.seed)
- actual = np.random.gumbel(loc = .123456789, scale = 2.0, size = (3, 2))
- desired = np.array([[ 0.19591898743416816, 0.34405539668096674],
- [-1.4492522252274278, -1.47374816298446865],
- [ 1.10651090478803416, -0.69535848626236174]])
+ actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
+ desired = np.array([[0.19591898743416816, 0.34405539668096674],
+ [-1.4492522252274278, -1.47374816298446865],
+ [1.10651090478803416, -0.69535848626236174]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_hypergeometric(self):
np.random.seed(self.seed)
actual = np.random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
desired = np.array([[10, 10],
- [10, 10],
- [ 9, 9]])
+ [10, 10],
+ [9, 9]])
np.testing.assert_array_equal(actual, desired)
# Test nbad = 0
@@ -418,49 +417,49 @@ class TestRandomDist(TestCase):
def test_laplace(self):
np.random.seed(self.seed)
actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[ 0.66599721112760157, 0.52829452552221945],
- [ 3.12791959514407125, 3.18202813572992005],
- [-0.05391065675859356, 1.74901336242837324]])
+ desired = np.array([[0.66599721112760157, 0.52829452552221945],
+ [3.12791959514407125, 3.18202813572992005],
+ [-0.05391065675859356, 1.74901336242837324]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_logistic(self):
np.random.seed(self.seed)
actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[ 1.09232835305011444, 0.8648196662399954 ],
- [ 4.27818590694950185, 4.33897006346929714],
- [-0.21682183359214885, 2.63373365386060332]])
+ desired = np.array([[1.09232835305011444, 0.8648196662399954],
+ [4.27818590694950185, 4.33897006346929714],
+ [-0.21682183359214885, 2.63373365386060332]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_lognormal(self):
np.random.seed(self.seed)
actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
- desired = np.array([[ 16.50698631688883822, 36.54846706092654784],
- [ 22.67886599981281748, 0.71617561058995771],
- [ 65.72798501792723869, 86.84341601437161273]])
+ desired = np.array([[16.50698631688883822, 36.54846706092654784],
+ [22.67886599981281748, 0.71617561058995771],
+ [65.72798501792723869, 86.84341601437161273]])
np.testing.assert_array_almost_equal(actual, desired, decimal=13)
def test_logseries(self):
np.random.seed(self.seed)
actual = np.random.logseries(p=.923456789, size=(3, 2))
- desired = np.array([[ 2, 2],
- [ 6, 17],
- [ 3, 6]])
+ desired = np.array([[2, 2],
+ [6, 17],
+ [3, 6]])
np.testing.assert_array_equal(actual, desired)
def test_multinomial(self):
np.random.seed(self.seed)
actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
desired = np.array([[[4, 3, 5, 4, 2, 2],
- [5, 2, 8, 2, 2, 1]],
- [[3, 4, 3, 6, 0, 4],
- [2, 1, 4, 3, 6, 4]],
- [[4, 4, 2, 5, 2, 3],
- [4, 3, 4, 2, 3, 4]]])
+ [5, 2, 8, 2, 2, 1]],
+ [[3, 4, 3, 6, 0, 4],
+ [2, 1, 4, 3, 6, 4]],
+ [[4, 4, 2, 5, 2, 3],
+ [4, 3, 4, 2, 3, 4]]])
np.testing.assert_array_equal(actual, desired)
def test_multivariate_normal(self):
np.random.seed(self.seed)
- mean= (.123456789, 10)
+ mean = (.123456789, 10)
# Hmm... not even symmetric.
cov = [[1, 0], [1, 0]]
size = (3, 2)
@@ -470,7 +469,7 @@ class TestRandomDist(TestCase):
[[-2.29186329304599745, 10.],
[-1.77505606019580053, 10.]],
[[-0.54970369430044119, 10.],
- [ 0.29768848031692957, 10.]]])
+ [0.29768848031692957, 10.]]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
# Check for default size, was raising deprecation warning
@@ -479,50 +478,50 @@ class TestRandomDist(TestCase):
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
# Check that non positive-semidefinite covariance raises warning
- mean= [0, 0]
+ mean = [0, 0]
cov = [[1, 1 + 1e-10], [1 + 1e-10, 1]]
- rng = np.random.multivariate_normal
assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov)
def test_negative_binomial(self):
np.random.seed(self.seed)
actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2))
desired = np.array([[848, 841],
- [892, 611],
- [779, 647]])
+ [892, 611],
+ [779, 647]])
np.testing.assert_array_equal(actual, desired)
def test_noncentral_chisquare(self):
np.random.seed(self.seed)
- actual = np.random.noncentral_chisquare(df = 5, nonc = 5, size = (3, 2))
- desired = np.array([[ 23.91905354498517511, 13.35324692733826346],
- [ 31.22452661329736401, 16.60047399466177254],
- [ 5.03461598262724586, 17.94973089023519464]])
+ actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
+ desired = np.array([[23.91905354498517511, 13.35324692733826346],
+ [31.22452661329736401, 16.60047399466177254],
+ [5.03461598262724586, 17.94973089023519464]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_noncentral_f(self):
np.random.seed(self.seed)
- actual = np.random.noncentral_f(dfnum = 5, dfden = 2, nonc = 1,
- size = (3, 2))
- desired = np.array([[ 1.40598099674926669, 0.34207973179285761],
- [ 3.57715069265772545, 7.92632662577829805],
- [ 0.43741599463544162, 1.1774208752428319 ]])
+ actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1,
+ size=(3, 2))
+ desired = np.array([[1.40598099674926669, 0.34207973179285761],
+ [3.57715069265772545, 7.92632662577829805],
+ [0.43741599463544162, 1.1774208752428319]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_normal(self):
np.random.seed(self.seed)
- actual = np.random.normal(loc = .123456789, scale = 2.0, size = (3, 2))
- desired = np.array([[ 2.80378370443726244, 3.59863924443872163],
- [ 3.121433477601256, -0.33382987590723379],
- [ 4.18552478636557357, 4.46410668111310471]])
+ actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2))
+ desired = np.array([[2.80378370443726244, 3.59863924443872163],
+ [3.121433477601256, -0.33382987590723379],
+ [4.18552478636557357, 4.46410668111310471]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_pareto(self):
np.random.seed(self.seed)
- actual = np.random.pareto(a =.123456789, size = (3, 2))
- desired = np.array([[ 2.46852460439034849e+03, 1.41286880810518346e+03],
- [ 5.28287797029485181e+07, 6.57720981047328785e+07],
- [ 1.40840323350391515e+02, 1.98390255135251704e+05]])
+ actual = np.random.pareto(a=.123456789, size=(3, 2))
+ desired = np.array(
+ [[2.46852460439034849e+03, 1.41286880810518346e+03],
+ [5.28287797029485181e+07, 6.57720981047328785e+07],
+ [1.40840323350391515e+02, 1.98390255135251704e+05]])
# For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
# matrix differs by 24 nulps. Discussion:
# http://mail.scipy.org/pipermail/numpy-discussion/2012-September/063801.html
@@ -533,7 +532,7 @@ class TestRandomDist(TestCase):
def test_poisson(self):
np.random.seed(self.seed)
- actual = np.random.poisson(lam = .123456789, size=(3, 2))
+ actual = np.random.poisson(lam=.123456789, size=(3, 2))
desired = np.array([[0, 0],
[1, 0],
[0, 0]])
@@ -549,84 +548,95 @@ class TestRandomDist(TestCase):
def test_power(self):
np.random.seed(self.seed)
- actual = np.random.power(a =.123456789, size = (3, 2))
- desired = np.array([[ 0.02048932883240791, 0.01424192241128213],
- [ 0.38446073748535298, 0.39499689943484395],
- [ 0.00177699707563439, 0.13115505880863756]])
+ actual = np.random.power(a=.123456789, size=(3, 2))
+ desired = np.array([[0.02048932883240791, 0.01424192241128213],
+ [0.38446073748535298, 0.39499689943484395],
+ [0.00177699707563439, 0.13115505880863756]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_rayleigh(self):
np.random.seed(self.seed)
- actual = np.random.rayleigh(scale = 10, size = (3, 2))
- desired = np.array([[ 13.8882496494248393, 13.383318339044731 ],
- [ 20.95413364294492098, 21.08285015800712614],
- [ 11.06066537006854311, 17.35468505778271009]])
+ actual = np.random.rayleigh(scale=10, size=(3, 2))
+ desired = np.array([[13.8882496494248393, 13.383318339044731],
+ [20.95413364294492098, 21.08285015800712614],
+ [11.06066537006854311, 17.35468505778271009]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_standard_cauchy(self):
np.random.seed(self.seed)
- actual = np.random.standard_cauchy(size = (3, 2))
- desired = np.array([[ 0.77127660196445336, -6.55601161955910605],
- [ 0.93582023391158309, -2.07479293013759447],
- [-4.74601644297011926, 0.18338989290760804]])
+ actual = np.random.standard_cauchy(size=(3, 2))
+ desired = np.array([[0.77127660196445336, -6.55601161955910605],
+ [0.93582023391158309, -2.07479293013759447],
+ [-4.74601644297011926, 0.18338989290760804]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_exponential(self):
np.random.seed(self.seed)
- actual = np.random.standard_exponential(size = (3, 2))
- desired = np.array([[ 0.96441739162374596, 0.89556604882105506],
- [ 2.1953785836319808, 2.22243285392490542],
- [ 0.6116915921431676, 1.50592546727413201]])
+ actual = np.random.standard_exponential(size=(3, 2))
+ desired = np.array([[0.96441739162374596, 0.89556604882105506],
+ [2.1953785836319808, 2.22243285392490542],
+ [0.6116915921431676, 1.50592546727413201]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_gamma(self):
np.random.seed(self.seed)
- actual = np.random.standard_gamma(shape = 3, size = (3, 2))
- desired = np.array([[ 5.50841531318455058, 6.62953470301903103],
- [ 5.93988484943779227, 2.31044849402133989],
- [ 7.54838614231317084, 8.012756093271868 ]])
+ actual = np.random.standard_gamma(shape=3, size=(3, 2))
+ desired = np.array([[5.50841531318455058, 6.62953470301903103],
+ [5.93988484943779227, 2.31044849402133989],
+ [7.54838614231317084, 8.012756093271868]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_standard_normal(self):
np.random.seed(self.seed)
- actual = np.random.standard_normal(size = (3, 2))
- desired = np.array([[ 1.34016345771863121, 1.73759122771936081],
- [ 1.498988344300628, -0.2286433324536169 ],
- [ 2.031033998682787, 2.17032494605655257]])
+ actual = np.random.standard_normal(size=(3, 2))
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
+ [1.498988344300628, -0.2286433324536169],
+ [2.031033998682787, 2.17032494605655257]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_standard_t(self):
np.random.seed(self.seed)
- actual = np.random.standard_t(df = 10, size = (3, 2))
- desired = np.array([[ 0.97140611862659965, -0.08830486548450577],
- [ 1.36311143689505321, -0.55317463909867071],
- [-0.18473749069684214, 0.61181537341755321]])
+ actual = np.random.standard_t(df=10, size=(3, 2))
+ desired = np.array([[0.97140611862659965, -0.08830486548450577],
+ [1.36311143689505321, -0.55317463909867071],
+ [-0.18473749069684214, 0.61181537341755321]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_triangular(self):
np.random.seed(self.seed)
- actual = np.random.triangular(left = 5.12, mode = 10.23, right = 20.34,
- size = (3, 2))
- desired = np.array([[ 12.68117178949215784, 12.4129206149193152 ],
- [ 16.20131377335158263, 16.25692138747600524],
- [ 11.20400690911820263, 14.4978144835829923 ]])
+ actual = np.random.triangular(left=5.12, mode=10.23, right=20.34,
+ size=(3, 2))
+ desired = np.array([[12.68117178949215784, 12.4129206149193152],
+ [16.20131377335158263, 16.25692138747600524],
+ [11.20400690911820263, 14.4978144835829923]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_uniform(self):
np.random.seed(self.seed)
- actual = np.random.uniform(low = 1.23, high=10.54, size = (3, 2))
- desired = np.array([[ 6.99097932346268003, 6.73801597444323974],
- [ 9.50364421400426274, 9.53130618907631089],
- [ 5.48995325769805476, 8.47493103280052118]])
+ actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2))
+ desired = np.array([[6.99097932346268003, 6.73801597444323974],
+ [9.50364421400426274, 9.53130618907631089],
+ [5.48995325769805476, 8.47493103280052118]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
+ def test_uniform_range_bounds(self):
+ fmin = np.finfo('float').min
+ fmax = np.finfo('float').max
+
+ func = np.random.uniform
+ np.testing.assert_raises(OverflowError, func, -np.inf, 0)
+ np.testing.assert_raises(OverflowError, func, 0, np.inf)
+ np.testing.assert_raises(OverflowError, func, fmin, fmax)
+
+ # (fmax / 1e17) - fmin is within range, so this should not throw
+ np.random.uniform(low=fmin, high=fmax / 1e17)
def test_vonmises(self):
np.random.seed(self.seed)
- actual = np.random.vonmises(mu = 1.23, kappa = 1.54, size = (3, 2))
- desired = np.array([[ 2.28567572673902042, 2.89163838442285037],
- [ 0.38198375564286025, 2.57638023113890746],
- [ 1.19153771588353052, 1.83509849681825354]])
+ actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
+ desired = np.array([[2.28567572673902042, 2.89163838442285037],
+ [0.38198375564286025, 2.57638023113890746],
+ [1.19153771588353052, 1.83509849681825354]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_vonmises_small(self):
@@ -637,31 +647,31 @@ class TestRandomDist(TestCase):
def test_wald(self):
np.random.seed(self.seed)
- actual = np.random.wald(mean = 1.23, scale = 1.54, size = (3, 2))
- desired = np.array([[ 3.82935265715889983, 5.13125249184285526],
- [ 0.35045403618358717, 1.50832396872003538],
- [ 0.24124319895843183, 0.22031101461955038]])
+ actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2))
+ desired = np.array([[3.82935265715889983, 5.13125249184285526],
+ [0.35045403618358717, 1.50832396872003538],
+ [0.24124319895843183, 0.22031101461955038]])
np.testing.assert_array_almost_equal(actual, desired, decimal=14)
def test_weibull(self):
np.random.seed(self.seed)
- actual = np.random.weibull(a = 1.23, size = (3, 2))
- desired = np.array([[ 0.97097342648766727, 0.91422896443565516],
- [ 1.89517770034962929, 1.91414357960479564],
- [ 0.67057783752390987, 1.39494046635066793]])
+ actual = np.random.weibull(a=1.23, size=(3, 2))
+ desired = np.array([[0.97097342648766727, 0.91422896443565516],
+ [1.89517770034962929, 1.91414357960479564],
+ [0.67057783752390987, 1.39494046635066793]])
np.testing.assert_array_almost_equal(actual, desired, decimal=15)
def test_zipf(self):
np.random.seed(self.seed)
- actual = np.random.zipf(a = 1.23, size = (3, 2))
+ actual = np.random.zipf(a=1.23, size=(3, 2))
desired = np.array([[66, 29],
- [ 1, 1],
- [ 3, 13]])
+ [1, 1],
+ [3, 13]])
np.testing.assert_array_equal(actual, desired)
-class TestThread:
- """ make sure each state produces the same sequence even in threads """
+class TestThread(object):
+ # make sure each state produces the same sequence even in threads
def setUp(self):
self.seeds = range(4)
@@ -681,7 +691,11 @@ class TestThread:
for s, o in zip(self.seeds, out2):
function(np.random.RandomState(s), o)
- np.testing.assert_array_equal(out1, out2)
+ # these platforms change x87 fpu precision mode in threads
+ if (np.intp().dtype.itemsize == 4 and sys.platform == "win32"):
+ np.testing.assert_array_almost_equal(out1, out2)
+ else:
+ np.testing.assert_array_equal(out1, out2)
def test_normal(self):
def gen_random(state, out):