diff options
Diffstat (limited to 'numpy/random')
-rw-r--r-- | numpy/random/__init__.py | 2 | ||||
-rw-r--r-- | numpy/random/setup.py | 8 | ||||
-rw-r--r-- | numpy/random/tests/test_random.py | 62 |
3 files changed, 36 insertions, 36 deletions
diff --git a/numpy/random/__init__.py b/numpy/random/__init__.py index 80723cec6..614b25a1c 100644 --- a/numpy/random/__init__.py +++ b/numpy/random/__init__.py @@ -100,7 +100,7 @@ with warnings.catch_warnings(): # Some aliases: ranf = random = sample = random_sample -__all__.extend(['ranf','random','sample']) +__all__.extend(['ranf', 'random', 'sample']) def __RandomState_ctor(): """Return a RandomState instance. diff --git a/numpy/random/setup.py b/numpy/random/setup.py index 917623bba..c7e792f2f 100644 --- a/numpy/random/setup.py +++ b/numpy/random/setup.py @@ -19,7 +19,7 @@ def needs_mingw_ftime_workaround(): def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration, get_mathlibs - config = Configuration('random',parent_package,top_path) + config = Configuration('random', parent_package, top_path) def generate_libraries(ext, build_dir): config_cmd = config.get_config_cmd() @@ -41,9 +41,9 @@ def configuration(parent_package='',top_path=None): ['mtrand.c', 'randomkit.c', 'initarray.c', 'distributions.c']]+[generate_libraries], libraries=libs, - depends = [join('mtrand','*.h'), - join('mtrand','*.pyx'), - join('mtrand','*.pxi'), + depends = [join('mtrand', '*.h'), + join('mtrand', '*.pyx'), + join('mtrand', '*.pxi'), ], define_macros = defs, ) diff --git a/numpy/random/tests/test_random.py b/numpy/random/tests/test_random.py index 6959c45dc..4ae7cfeb1 100644 --- a/numpy/random/tests/test_random.py +++ b/numpy/random/tests/test_random.py @@ -26,8 +26,8 @@ class TestMultinomial(TestCase): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) def test_int_negative_interval(self): - assert_( -5 <= random.randint(-5,-1) < -1) - x = random.randint(-5,-1,5) + assert_( -5 <= random.randint(-5, -1) < -1) + x = random.randint(-5, -1, 5) assert_(np.all(-5 <= x)) assert_(np.all(x < -1)) @@ -94,20 +94,20 @@ class TestRandomDist(TestCase): actual = np.random.rand(3, 2) desired = np.array([[ 0.61879477158567997, 0.59162362775974664], [ 0.88868358904449662, 0.89165480011560816], - [ 0.4575674820298663 , 0.7781880808593471 ]]) + [ 0.4575674820298663, 0.7781880808593471 ]]) np.testing.assert_array_almost_equal(actual, desired, decimal=15) def test_randn(self): np.random.seed(self.seed) actual = np.random.randn(3, 2) desired = np.array([[ 1.34016345771863121, 1.73759122771936081], - [ 1.498988344300628 , -0.2286433324536169 ], - [ 2.031033998682787 , 2.17032494605655257]]) + [ 1.498988344300628, -0.2286433324536169 ], + [ 2.031033998682787, 2.17032494605655257]]) np.testing.assert_array_almost_equal(actual, desired, decimal=15) def test_randint(self): np.random.seed(self.seed) - actual = np.random.randint(-99, 99, size=(3,2)) + actual = np.random.randint(-99, 99, size=(3, 2)) desired = np.array([[ 31, 3], [-52, 41], [-48, -66]]) @@ -115,7 +115,7 @@ class TestRandomDist(TestCase): def test_random_integers(self): np.random.seed(self.seed) - actual = np.random.random_integers(-99, 99, size=(3,2)) + actual = np.random.random_integers(-99, 99, size=(3, 2)) desired = np.array([[ 31, 3], [-52, 41], [-48, -66]]) @@ -126,7 +126,7 @@ class TestRandomDist(TestCase): actual = np.random.random_sample((3, 2)) desired = np.array([[ 0.61879477158567997, 0.59162362775974664], [ 0.88868358904449662, 0.89165480011560816], - [ 0.4575674820298663 , 0.7781880808593471 ]]) + [ 0.4575674820298663, 0.7781880808593471 ]]) np.testing.assert_array_almost_equal(actual, desired, decimal=15) def test_choice_uniform_replace(self): @@ -164,25 +164,25 @@ class TestRandomDist(TestCase): sample = np.random.choice assert_raises(ValueError, sample, -1, 3) assert_raises(ValueError, sample, 3., 3) - assert_raises(ValueError, sample, [[1,2],[3,4]], 3) + assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3) assert_raises(ValueError, sample, [], 3) - assert_raises(ValueError, sample, [1,2,3,4], 3, - p=[[0.25,0.25],[0.25,0.25]]) - assert_raises(ValueError, sample, [1,2], 3, p=[0.4,0.4,0.2]) - assert_raises(ValueError, sample, [1,2], 3, p=[1.1,-0.1]) - assert_raises(ValueError, sample, [1,2], 3, p=[0.4,0.4]) - assert_raises(ValueError, sample, [1,2,3], 4, replace=False) - assert_raises(ValueError, sample, [1,2,3], 2, replace=False, - p=[1,0,0]) + assert_raises(ValueError, sample, [1, 2, 3, 4], 3, + p=[[0.25, 0.25], [0.25, 0.25]]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) + assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) + assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) + assert_raises(ValueError, sample, [1, 2, 3], 2, replace=False, + p=[1, 0, 0]) def test_choice_return_shape(self): - p = [0.1,0.9] + p = [0.1, 0.9] # Check scalar assert_(np.isscalar(np.random.choice(2, replace=True))) assert_(np.isscalar(np.random.choice(2, replace=False))) assert_(np.isscalar(np.random.choice(2, replace=True, p=p))) assert_(np.isscalar(np.random.choice(2, replace=False, p=p))) - assert_(np.isscalar(np.random.choice([1,2], replace=True))) + assert_(np.isscalar(np.random.choice([1, 2], replace=True))) assert_(np.random.choice([None], replace=True) is None) a = np.array([1, 2]) arr = np.empty(1, dtype=object) @@ -195,7 +195,7 @@ class TestRandomDist(TestCase): assert_(not np.isscalar(np.random.choice(2, s, replace=False))) assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p))) assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p))) - assert_(not np.isscalar(np.random.choice([1,2], s, replace=True))) + assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True))) assert_(np.random.choice([None], s, replace=True).ndim == 0) a = np.array([1, 2]) arr = np.empty(1, dtype=object) @@ -203,7 +203,7 @@ class TestRandomDist(TestCase): assert_(np.random.choice(arr, s, replace=True).item() is a) # Check multi dimensional array - s = (2,3) + s = (2, 3) p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] assert_(np.random.choice(6, s, replace=True).shape, s) assert_(np.random.choice(6, s, replace=False).shape, s) @@ -224,7 +224,7 @@ class TestRandomDist(TestCase): lambda x: [(i, i) for i in x], lambda x: np.asarray([(i, i) for i in x])]: np.random.seed(self.seed) - alist = conv([1,2,3,4,5,6,7,8,9,0]) + alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) np.random.shuffle(alist) actual = alist desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3]) @@ -251,7 +251,7 @@ class TestRandomDist(TestCase): actual = np.random.chisquare(50, size=(3, 2)) desired = np.array([[ 63.87858175501090585, 68.68407748911370447], [ 65.77116116901505904, 47.09686762438974483], - [ 72.3828403199695174 , 74.18408615260374006]]) + [ 72.3828403199695174, 74.18408615260374006]]) np.testing.assert_array_almost_equal(actual, desired, decimal=13) def test_dirichlet(self): @@ -302,7 +302,7 @@ class TestRandomDist(TestCase): np.random.seed(self.seed) actual = np.random.gumbel(loc = .123456789, scale = 2.0, size = (3, 2)) desired = np.array([[ 0.19591898743416816, 0.34405539668096674], - [-1.4492522252274278 , -1.47374816298446865], + [-1.4492522252274278, -1.47374816298446865], [ 1.10651090478803416, -0.69535848626236174]]) np.testing.assert_array_almost_equal(actual, desired, decimal=15) @@ -378,7 +378,7 @@ class TestRandomDist(TestCase): def test_multivariate_normal(self): np.random.seed(self.seed) mean= (.123456789, 10) - cov = [[1,0],[1,0]] + cov = [[1, 0], [1, 0]] size = (3, 2) actual = np.random.multivariate_normal(mean, cov, size) desired = np.array([[[ -1.47027513018564449, 10. ], @@ -418,7 +418,7 @@ class TestRandomDist(TestCase): np.random.seed(self.seed) actual = np.random.normal(loc = .123456789, scale = 2.0, size = (3, 2)) desired = np.array([[ 2.80378370443726244, 3.59863924443872163], - [ 3.121433477601256 , -0.33382987590723379], + [ 3.121433477601256, -0.33382987590723379], [ 4.18552478636557357, 4.46410668111310471]]) np.testing.assert_array_almost_equal(actual, desired, decimal=15) @@ -463,7 +463,7 @@ class TestRandomDist(TestCase): def test_rayleigh(self): np.random.seed(self.seed) actual = np.random.rayleigh(scale = 10, size = (3, 2)) - desired = np.array([[ 13.8882496494248393 , 13.383318339044731 ], + desired = np.array([[ 13.8882496494248393, 13.383318339044731 ], [ 20.95413364294492098, 21.08285015800712614], [ 11.06066537006854311, 17.35468505778271009]]) np.testing.assert_array_almost_equal(actual, desired, decimal=14) @@ -480,8 +480,8 @@ class TestRandomDist(TestCase): np.random.seed(self.seed) actual = np.random.standard_exponential(size = (3, 2)) desired = np.array([[ 0.96441739162374596, 0.89556604882105506], - [ 2.1953785836319808 , 2.22243285392490542], - [ 0.6116915921431676 , 1.50592546727413201]]) + [ 2.1953785836319808, 2.22243285392490542], + [ 0.6116915921431676, 1.50592546727413201]]) np.testing.assert_array_almost_equal(actual, desired, decimal=15) def test_standard_gamma(self): @@ -496,8 +496,8 @@ class TestRandomDist(TestCase): np.random.seed(self.seed) actual = np.random.standard_normal(size = (3, 2)) desired = np.array([[ 1.34016345771863121, 1.73759122771936081], - [ 1.498988344300628 , -0.2286433324536169 ], - [ 2.031033998682787 , 2.17032494605655257]]) + [ 1.498988344300628, -0.2286433324536169 ], + [ 2.031033998682787, 2.17032494605655257]]) np.testing.assert_array_almost_equal(actual, desired, decimal=15) def test_standard_t(self): |