diff options
Diffstat (limited to 'numpy/testing/_private/utils.py')
-rw-r--r-- | numpy/testing/_private/utils.py | 143 |
1 files changed, 122 insertions, 21 deletions
diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 8a31fcf15..4642cc0f8 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -21,6 +21,7 @@ import pprint from numpy.core import( intp, float32, empty, arange, array_repr, ndarray, isnat, array) +import numpy.__config__ if sys.version_info[0] >= 3: from io import StringIO @@ -39,7 +40,7 @@ __all__ = [ 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', 'HAS_REFCOUNT', 'suppress_warnings', 'assert_array_compare', '_assert_valid_refcount', '_gen_alignment_data', 'assert_no_gc_cycles', - 'break_cycles', + 'break_cycles', 'HAS_LAPACK64' ] @@ -53,6 +54,7 @@ verbose = 0 IS_PYPY = platform.python_implementation() == 'PyPy' HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None +HAS_LAPACK64 = hasattr(numpy.__config__, 'lapack64__opt_info') def import_nose(): @@ -284,6 +286,10 @@ def assert_equal(actual, desired, err_msg='', verbose=True): check that all elements of these objects are equal. An exception is raised at the first conflicting values. + When one of `actual` and `desired` is a scalar and the other is array_like, + the function checks that each element of the array_like object is equal to + the scalar. + This function handles NaN comparisons as if NaN was a "normal" number. That is, no assertion is raised if both objects have NaNs in the same positions. This is in contrast to the IEEE standard on NaNs, which says @@ -374,21 +380,6 @@ def assert_equal(actual, desired, err_msg='', verbose=True): if isscalar(desired) != isscalar(actual): raise AssertionError(msg) - # Inf/nan/negative zero handling - try: - isdesnan = gisnan(desired) - isactnan = gisnan(actual) - if isdesnan and isactnan: - return # both nan, so equal - - # handle signed zero specially for floats - if desired == 0 and actual == 0: - if not signbit(desired) == signbit(actual): - raise AssertionError(msg) - - except (TypeError, ValueError, NotImplementedError): - pass - try: isdesnat = isnat(desired) isactnat = isnat(actual) @@ -404,6 +395,33 @@ def assert_equal(actual, desired, err_msg='', verbose=True): except (TypeError, ValueError, NotImplementedError): pass + # Inf/nan/negative zero handling + try: + isdesnan = gisnan(desired) + isactnan = gisnan(actual) + if isdesnan and isactnan: + return # both nan, so equal + + # handle signed zero specially for floats + array_actual = array(actual) + array_desired = array(desired) + if (array_actual.dtype.char in 'Mm' or + array_desired.dtype.char in 'Mm'): + # version 1.18 + # until this version, gisnan failed for datetime64 and timedelta64. + # Now it succeeds but comparison to scalar with a different type + # emits a DeprecationWarning. + # Avoid that by skipping the next check + raise NotImplementedError('cannot compare to a scalar ' + 'with a different type') + + if desired == 0 and actual == 0: + if not signbit(desired) == signbit(actual): + raise AssertionError(msg) + + except (TypeError, ValueError, NotImplementedError): + pass + try: # Explicitly use __eq__ for comparison, gh-2552 if not (desired == actual): @@ -841,10 +859,11 @@ def assert_array_equal(x, y, err_msg='', verbose=True): Raises an AssertionError if two array_like objects are not equal. Given two array_like objects, check that the shape is equal and all - elements of these objects are equal. An exception is raised at - shape mismatch or conflicting values. In contrast to the standard usage - in numpy, NaNs are compared like numbers, no assertion is raised if - both objects have NaNs in the same positions. + elements of these objects are equal (but see the Notes for the special + handling of a scalar). An exception is raised at shape mismatch or + conflicting values. In contrast to the standard usage in numpy, NaNs + are compared like numbers, no assertion is raised if both objects have + NaNs in the same positions. The usual caution for verifying equality with floating point numbers is advised. @@ -871,6 +890,12 @@ def assert_array_equal(x, y, err_msg='', verbose=True): relative and/or absolute precision. assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + Notes + ----- + When one of `x` and `y` is a scalar and the other is array_like, the + function checks that each element of the array_like object is equal to + the scalar. + Examples -------- The first assert does not raise an exception: @@ -878,7 +903,7 @@ def assert_array_equal(x, y, err_msg='', verbose=True): >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], ... [np.exp(0),2.33333, np.nan]) - Assert fails with numerical inprecision with floats: + Assert fails with numerical imprecision with floats: >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], ... [1, np.sqrt(np.pi)**2, np.nan]) @@ -899,6 +924,12 @@ def assert_array_equal(x, y, err_msg='', verbose=True): ... [1, np.sqrt(np.pi)**2, np.nan], ... rtol=1e-10, atol=0) + As mentioned in the Notes section, `assert_array_equal` has special + handling for scalars. Here the test checks that each value in `x` is 3: + + >>> x = np.full((2, 5), fill_value=3) + >>> np.testing.assert_array_equal(x, 3) + """ __tracebackhide__ = True # Hide traceback for py.test assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, @@ -2351,3 +2382,73 @@ def break_cycles(): gc.collect() # one more, just to make sure gc.collect() + + +def requires_memory(free_bytes): + """Decorator to skip a test if not enough memory is available""" + import pytest + + env_var = 'NPY_AVAILABLE_MEM' + env_value = os.environ.get(env_var) + if env_value is not None: + try: + mem_free = _parse_size(env_value) + except ValueError as exc: + raise ValueError('Invalid environment variable {}: {!s}'.format( + env_var, exc)) + + msg = ('{0} GB memory required, but environment variable ' + 'NPY_AVAILABLE_MEM={1} set'.format( + free_bytes/1e9, env_value)) + else: + mem_free = _get_mem_available() + + if mem_free is None: + msg = ("Could not determine available memory; set NPY_AVAILABLE_MEM " + "environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run " + "the test.") + mem_free = -1 + else: + msg = '{0} GB memory required, but {1} GB available'.format( + free_bytes/1e9, mem_free/1e9) + + return pytest.mark.skipif(mem_free < free_bytes, reason=msg) + + +def _parse_size(size_str): + """Convert memory size strings ('12 GB' etc.) to float""" + suffixes = {'': 1.0, 'b': 1.0, + 'k': 1e3, 'm': 1e6, 'g': 1e9, 't': 1e12, + 'kb': 1e3, 'mb': 1e6, 'gb': 1e9, 'tb': 1e12} + + size_re = re.compile(r'^\s*(\d+|\d+\.\d+)\s*({0})\s*$'.format( + '|'.join(suffixes.keys())), re.I) + + m = size_re.match(size_str.lower()) + if not m or m.group(2) not in suffixes: + raise ValueError("value {!r} not a valid size".format(size_str)) + return float(m.group(1)) * suffixes[m.group(2)] + + +def _get_mem_available(): + """Return available memory in bytes, or None if unknown.""" + try: + import psutil + return psutil.virtual_memory().available + except (ImportError, AttributeError): + pass + + if sys.platform.startswith('linux'): + info = {} + with open('/proc/meminfo', 'r') as f: + for line in f: + p = line.split() + info[p[0].strip(':').lower()] = float(p[1]) * 1e3 + + if 'memavailable' in info: + # Linux >= 3.14 + return info['memavailable'] + else: + return info['memfree'] + info['cached'] + + return None |