diff options
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/__init__.py | 5 | ||||
-rw-r--r-- | numpy/core/_add_newdocs.py | 4 | ||||
-rw-r--r-- | numpy/core/multiarray.py | 27 | ||||
-rw-r--r-- | numpy/core/src/multiarray/array_coercion.c | 18 | ||||
-rw-r--r-- | numpy/core/src/multiarray/ctors.c | 4 | ||||
-rw-r--r-- | numpy/core/src/multiarray/einsum_sumprod.c.src | 186 | ||||
-rw-r--r-- | numpy/core/src/multiarray/multiarraymodule.c | 39 | ||||
-rw-r--r-- | numpy/core/tests/test_array_coercion.py | 30 | ||||
-rw-r--r-- | numpy/fft/_pocketfft.py | 19 | ||||
-rw-r--r-- | numpy/lib/npyio.py | 40 | ||||
-rw-r--r-- | numpy/random/_generator.pyx | 19 | ||||
-rw-r--r-- | numpy/random/tests/test_generator_mt19937.py | 15 | ||||
-rw-r--r-- | numpy/tests/test_reloading.py | 14 |
13 files changed, 232 insertions, 188 deletions
diff --git a/numpy/__init__.py b/numpy/__init__.py index 879e8f013..a242bb7df 100644 --- a/numpy/__init__.py +++ b/numpy/__init__.py @@ -389,7 +389,12 @@ else: # Note that this will currently only make a difference on Linux core.multiarray._set_madvise_hugepage(use_hugepage) + # Give a warning if NumPy is reloaded or imported on a sub-interpreter + # We do this from python, since the C-module may not be reloaded and + # it is tidier organized. + core.multiarray._multiarray_umath._reload_guard() from ._version import get_versions __version__ = get_versions()['version'] del get_versions + diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py index e2bf6c439..2cbfe52be 100644 --- a/numpy/core/_add_newdocs.py +++ b/numpy/core/_add_newdocs.py @@ -1147,13 +1147,13 @@ add_newdoc('numpy.core.multiarray', 'compare_chararrays', add_newdoc('numpy.core.multiarray', 'fromiter', """ - fromiter(iterable, dtype, count=-1, *, like=None) + fromiter(iter, dtype, count=-1, *, like=None) Create a new 1-dimensional array from an iterable object. Parameters ---------- - iterable : iterable object + iter : iterable object An iterable object providing data for the array. dtype : data-type The data-type of the returned array. diff --git a/numpy/core/multiarray.py b/numpy/core/multiarray.py index f736973de..07179a627 100644 --- a/numpy/core/multiarray.py +++ b/numpy/core/multiarray.py @@ -259,12 +259,16 @@ def inner(a, b): Returns ------- out : ndarray - `out.shape = a.shape[:-1] + b.shape[:-1]` + If `a` and `b` are both + scalars or both 1-D arrays then a scalar is returned; otherwise + an array is returned. + ``out.shape = (*a.shape[:-1], *b.shape[:-1])`` Raises ------ ValueError - If the last dimension of `a` and `b` has different size. + If both `a` and `b` are nonscalar and their last dimensions have + different sizes. See Also -------- @@ -284,8 +288,8 @@ def inner(a, b): or explicitly:: - np.inner(a, b)[i0,...,ir-1,j0,...,js-1] - = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:]) + np.inner(a, b)[i0,...,ir-2,j0,...,js-2] + = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:]) In addition `a` or `b` may be scalars, in which case:: @@ -300,14 +304,25 @@ def inner(a, b): >>> np.inner(a, b) 2 - A multidimensional example: + Some multidimensional examples: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) - >>> np.inner(a, b) + >>> c = np.inner(a, b) + >>> c.shape + (2, 3) + >>> c array([[ 14, 38, 62], [ 86, 110, 134]]) + >>> a = np.arange(2).reshape((1,1,2)) + >>> b = np.arange(6).reshape((3,2)) + >>> c = np.inner(a, b) + >>> c.shape + (1, 1, 3) + >>> c + array([[[1, 3, 5]]]) + An example where `b` is a scalar: >>> np.inner(np.eye(2), 7) diff --git a/numpy/core/src/multiarray/array_coercion.c b/numpy/core/src/multiarray/array_coercion.c index 53d891049..603e9d93b 100644 --- a/numpy/core/src/multiarray/array_coercion.c +++ b/numpy/core/src/multiarray/array_coercion.c @@ -979,14 +979,28 @@ PyArray_DiscoverDTypeAndShape_Recursive( * and to handle it recursively. That is, unless we have hit the * dimension limit. */ - npy_bool is_sequence = (PySequence_Check(obj) && PySequence_Size(obj) >= 0); + npy_bool is_sequence = PySequence_Check(obj); + if (is_sequence) { + is_sequence = PySequence_Size(obj) >= 0; + if (NPY_UNLIKELY(!is_sequence)) { + /* NOTE: This should likely just raise all errors */ + if (PyErr_ExceptionMatches(PyExc_RecursionError) || + PyErr_ExceptionMatches(PyExc_MemoryError)) { + /* + * Consider these unrecoverable errors, continuing execution + * might crash the interpreter. + */ + return -1; + } + PyErr_Clear(); + } + } if (NPY_UNLIKELY(*flags & DISCOVER_TUPLES_AS_ELEMENTS) && PyTuple_Check(obj)) { is_sequence = NPY_FALSE; } if (curr_dims == max_dims || !is_sequence) { /* Clear any PySequence_Size error which would corrupts further calls */ - PyErr_Clear(); max_dims = handle_scalar( obj, curr_dims, &max_dims, out_descr, out_shape, fixed_DType, flags, NULL); diff --git a/numpy/core/src/multiarray/ctors.c b/numpy/core/src/multiarray/ctors.c index f6031e370..58571b678 100644 --- a/numpy/core/src/multiarray/ctors.c +++ b/numpy/core/src/multiarray/ctors.c @@ -2124,7 +2124,7 @@ PyArray_FromInterface(PyObject *origin) if (iface == NULL) { if (PyErr_Occurred()) { - PyErr_Clear(); /* TODO[gh-14801]: propagate crashes during attribute access? */ + return NULL; } return Py_NotImplemented; } @@ -2392,7 +2392,7 @@ PyArray_FromArrayAttr(PyObject *op, PyArray_Descr *typecode, PyObject *context) array_meth = PyArray_LookupSpecial_OnInstance(op, "__array__"); if (array_meth == NULL) { if (PyErr_Occurred()) { - PyErr_Clear(); /* TODO[gh-14801]: propagate crashes during attribute access? */ + return NULL; } return Py_NotImplemented; } diff --git a/numpy/core/src/multiarray/einsum_sumprod.c.src b/numpy/core/src/multiarray/einsum_sumprod.c.src index caba0e00a..86d5b82fc 100644 --- a/numpy/core/src/multiarray/einsum_sumprod.c.src +++ b/numpy/core/src/multiarray/einsum_sumprod.c.src @@ -589,7 +589,7 @@ finish_after_unrolled_loop: goto finish_after_unrolled_loop; } -static void +static NPY_GCC_OPT_3 void @name@_sum_of_products_contig_contig_outstride0_two(int nop, char **dataptr, npy_intp const *NPY_UNUSED(strides), npy_intp count) { @@ -597,156 +597,60 @@ static void @type@ *data1 = (@type@ *)dataptr[1]; @temptype@ accum = 0; -#if EINSUM_USE_SSE1 && @float32@ - __m128 a, accum_sse = _mm_setzero_ps(); -#elif EINSUM_USE_SSE2 && @float64@ - __m128d a, accum_sse = _mm_setzero_pd(); -#endif - NPY_EINSUM_DBG_PRINT1("@name@_sum_of_products_contig_contig_outstride0_two (%d)\n", (int)count); - -/* This is placed before the main loop to make small counts faster */ -finish_after_unrolled_loop: - switch (count) { -/**begin repeat2 - * #i = 6, 5, 4, 3, 2, 1, 0# - */ - case @i@+1: - accum += @from@(data0[@i@]) * @from@(data1[@i@]); -/**end repeat2**/ - case 0: - *(@type@ *)dataptr[2] = @to@(@from@(*(@type@ *)dataptr[2]) + accum); - return; - } - -#if EINSUM_USE_SSE1 && @float32@ +#if @NPYV_CHK@ // NPYV check for @type@ /* Use aligned instructions if possible */ - if (EINSUM_IS_SSE_ALIGNED(data0) && EINSUM_IS_SSE_ALIGNED(data1)) { - /* Unroll the loop by 8 */ - while (count >= 8) { - count -= 8; - - _mm_prefetch(data0 + 512, _MM_HINT_T0); - _mm_prefetch(data1 + 512, _MM_HINT_T0); + const int is_aligned = EINSUM_IS_ALIGNED(data0) && EINSUM_IS_ALIGNED(data1); + const int vstep = npyv_nlanes_@sfx@; + npyv_@sfx@ vaccum = npyv_zero_@sfx@(); -/**begin repeat2 - * #i = 0, 4# - */ - /* - * NOTE: This accumulation changes the order, so will likely - * produce slightly different results. + /**begin repeat2 + * #cond = if(is_aligned), else# + * #ld = loada, load# + * #st = storea, store# + */ + @cond@ { + const npy_intp vstepx4 = vstep * 4; + for (; count >= vstepx4; count -= vstepx4, data0 += vstepx4, data1 += vstepx4) { + /**begin repeat3 + * #i = 0, 1, 2, 3# */ - a = _mm_mul_ps(_mm_load_ps(data0+@i@), _mm_load_ps(data1+@i@)); - accum_sse = _mm_add_ps(accum_sse, a); -/**end repeat2**/ - data0 += 8; - data1 += 8; + npyv_@sfx@ a@i@ = npyv_@ld@_@sfx@(data0 + vstep * @i@); + npyv_@sfx@ b@i@ = npyv_@ld@_@sfx@(data1 + vstep * @i@); + /**end repeat3**/ + npyv_@sfx@ ab3 = npyv_muladd_@sfx@(a3, b3, vaccum); + npyv_@sfx@ ab2 = npyv_muladd_@sfx@(a2, b2, ab3); + npyv_@sfx@ ab1 = npyv_muladd_@sfx@(a1, b1, ab2); + vaccum = npyv_muladd_@sfx@(a0, b0, ab1); } - - /* Add the four SSE values and put in accum */ - a = _mm_shuffle_ps(accum_sse, accum_sse, _MM_SHUFFLE(2,3,0,1)); - accum_sse = _mm_add_ps(a, accum_sse); - a = _mm_shuffle_ps(accum_sse, accum_sse, _MM_SHUFFLE(1,0,3,2)); - accum_sse = _mm_add_ps(a, accum_sse); - _mm_store_ss(&accum, accum_sse); - - /* Finish off the loop */ - goto finish_after_unrolled_loop; } -#elif EINSUM_USE_SSE2 && @float64@ - /* Use aligned instructions if possible */ - if (EINSUM_IS_SSE_ALIGNED(data0) && EINSUM_IS_SSE_ALIGNED(data1)) { - /* Unroll the loop by 8 */ - while (count >= 8) { - count -= 8; - - _mm_prefetch(data0 + 512, _MM_HINT_T0); - _mm_prefetch(data1 + 512, _MM_HINT_T0); - -/**begin repeat2 - * #i = 0, 2, 4, 6# - */ - /* - * NOTE: This accumulation changes the order, so will likely - * produce slightly different results. - */ - a = _mm_mul_pd(_mm_load_pd(data0+@i@), _mm_load_pd(data1+@i@)); - accum_sse = _mm_add_pd(accum_sse, a); -/**end repeat2**/ - data0 += 8; - data1 += 8; - } - - /* Add the two SSE2 values and put in accum */ - a = _mm_shuffle_pd(accum_sse, accum_sse, _MM_SHUFFLE2(0,1)); - accum_sse = _mm_add_pd(a, accum_sse); - _mm_store_sd(&accum, accum_sse); - - /* Finish off the loop */ - goto finish_after_unrolled_loop; + /**end repeat2**/ + for (; count > 0; count -= vstep, data0 += vstep, data1 += vstep) { + npyv_@sfx@ a = npyv_load_tillz_@sfx@(data0, count); + npyv_@sfx@ b = npyv_load_tillz_@sfx@(data1, count); + vaccum = npyv_muladd_@sfx@(a, b, vaccum); } -#endif - - /* Unroll the loop by 8 */ - while (count >= 8) { - count -= 8; - -#if EINSUM_USE_SSE1 && @float32@ - _mm_prefetch(data0 + 512, _MM_HINT_T0); - _mm_prefetch(data1 + 512, _MM_HINT_T0); - -/**begin repeat2 - * #i = 0, 4# - */ - /* - * NOTE: This accumulation changes the order, so will likely - * produce slightly different results. - */ - a = _mm_mul_ps(_mm_loadu_ps(data0+@i@), _mm_loadu_ps(data1+@i@)); - accum_sse = _mm_add_ps(accum_sse, a); -/**end repeat2**/ -#elif EINSUM_USE_SSE2 && @float64@ - _mm_prefetch(data0 + 512, _MM_HINT_T0); - _mm_prefetch(data1 + 512, _MM_HINT_T0); - -/**begin repeat2 - * #i = 0, 2, 4, 6# - */ - /* - * NOTE: This accumulation changes the order, so will likely - * produce slightly different results. - */ - a = _mm_mul_pd(_mm_loadu_pd(data0+@i@), _mm_loadu_pd(data1+@i@)); - accum_sse = _mm_add_pd(accum_sse, a); -/**end repeat2**/ + accum = npyv_sum_@sfx@(vaccum); + npyv_cleanup(); #else -/**begin repeat2 - * #i = 0, 1, 2, 3, 4, 5, 6, 7# - */ - accum += @from@(data0[@i@]) * @from@(data1[@i@]); -/**end repeat2**/ -#endif - data0 += 8; - data1 += 8; +#ifndef NPY_DISABLE_OPTIMIZATION + for (; count >= 4; count -= 4, data0 += 4, data1 += 4) { + /**begin repeat2 + * #i = 0, 1, 2, 3# + */ + const @type@ ab@i@ = @from@(data0[@i@]) * @from@(data1[@i@]); + /**end repeat2**/ + accum += ab0 + ab1 + ab2 + ab3; } - -#if EINSUM_USE_SSE1 && @float32@ - /* Add the four SSE values and put in accum */ - a = _mm_shuffle_ps(accum_sse, accum_sse, _MM_SHUFFLE(2,3,0,1)); - accum_sse = _mm_add_ps(a, accum_sse); - a = _mm_shuffle_ps(accum_sse, accum_sse, _MM_SHUFFLE(1,0,3,2)); - accum_sse = _mm_add_ps(a, accum_sse); - _mm_store_ss(&accum, accum_sse); -#elif EINSUM_USE_SSE2 && @float64@ - /* Add the two SSE2 values and put in accum */ - a = _mm_shuffle_pd(accum_sse, accum_sse, _MM_SHUFFLE2(0,1)); - accum_sse = _mm_add_pd(a, accum_sse); - _mm_store_sd(&accum, accum_sse); -#endif - - /* Finish off the loop */ - goto finish_after_unrolled_loop; +#endif // !NPY_DISABLE_OPTIMIZATION + for (; count > 0; --count, ++data0, ++data1) { + const @type@ a = @from@(*data0); + const @type@ b = @from@(*data1); + accum += a * b; + } +#endif // NPYV check for @type@ + *(@type@ *)dataptr[2] = @to@(@from@(*(@type@ *)dataptr[2]) + accum); } static void diff --git a/numpy/core/src/multiarray/multiarraymodule.c b/numpy/core/src/multiarray/multiarraymodule.c index 32c5ac0dc..870b633ed 100644 --- a/numpy/core/src/multiarray/multiarraymodule.c +++ b/numpy/core/src/multiarray/multiarraymodule.c @@ -4085,6 +4085,42 @@ normalize_axis_index(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds) } +static PyObject * +_reload_guard(PyObject *NPY_UNUSED(self)) { + static int initialized = 0; + +#if !defined(PYPY_VERSION) + if (PyThreadState_Get()->interp != PyInterpreterState_Main()) { + if (PyErr_WarnEx(PyExc_UserWarning, + "NumPy was imported from a Python sub-interpreter but " + "NumPy does not properly support sub-interpreters. " + "This will likely work for most users but might cause hard to " + "track down issues or subtle bugs. " + "A common user of the rare sub-interpreter feature is wsgi " + "which also allows single-interpreter mode.\n" + "Improvements in the case of bugs are welcome, but is not " + "on the NumPy roadmap, and full support may require " + "significant effort to achieve.", 2) < 0) { + return NULL; + } + /* No need to give the other warning in a sub-interpreter as well... */ + initialized = 1; + Py_RETURN_NONE; + } +#endif + if (initialized) { + if (PyErr_WarnEx(PyExc_UserWarning, + "The NumPy module was reloaded (imported a second time). " + "This can in some cases result in small but subtle issues " + "and is discouraged.", 2) < 0) { + return NULL; + } + } + initialized = 1; + Py_RETURN_NONE; +} + + static struct PyMethodDef array_module_methods[] = { {"_get_implementing_args", (PyCFunction)array__get_implementing_args, @@ -4276,6 +4312,9 @@ static struct PyMethodDef array_module_methods[] = { METH_VARARGS, NULL}, {"_set_madvise_hugepage", (PyCFunction)_set_madvise_hugepage, METH_O, NULL}, + {"_reload_guard", (PyCFunction)_reload_guard, + METH_NOARGS, + "Give a warning on reload and big warning in sub-interpreters."}, {NULL, NULL, 0, NULL} /* sentinel */ }; diff --git a/numpy/core/tests/test_array_coercion.py b/numpy/core/tests/test_array_coercion.py index 78def9360..b966ee7b0 100644 --- a/numpy/core/tests/test_array_coercion.py +++ b/numpy/core/tests/test_array_coercion.py @@ -689,3 +689,33 @@ class TestArrayLikes: np.array(arr) with pytest.raises(MemoryError): np.array([arr]) + + @pytest.mark.parametrize("attribute", + ["__array_interface__", "__array__", "__array_struct__"]) + def test_bad_array_like_attributes(self, attribute): + # Check that errors during attribute retrieval are raised unless + # they are Attribute errors. + + class BadInterface: + def __getattr__(self, attr): + if attr == attribute: + raise RuntimeError + super().__getattr__(attr) + + with pytest.raises(RuntimeError): + np.array(BadInterface()) + + @pytest.mark.parametrize("error", [RecursionError, MemoryError]) + def test_bad_array_like_bad_length(self, error): + # RecursionError and MemoryError are considered "critical" in + # sequences. We could expand this more generally though. (NumPy 1.20) + class BadSequence: + def __len__(self): + raise error + def __getitem__(self): + # must have getitem to be a Sequence + return 1 + + with pytest.raises(error): + np.array(BadSequence()) + diff --git a/numpy/fft/_pocketfft.py b/numpy/fft/_pocketfft.py index 83ac86036..2066b95ea 100644 --- a/numpy/fft/_pocketfft.py +++ b/numpy/fft/_pocketfft.py @@ -1242,6 +1242,15 @@ def rfft2(a, s=None, axes=(-2, -1), norm=None): This is really just `rfftn` with different default behavior. For more details see `rfftn`. + Examples + -------- + >>> a = np.mgrid[:5, :5][0] + >>> np.fft.rfft2(a) + array([[ 50. +0.j , 0. +0.j , 0. +0.j ], + [-12.5+17.20477401j, 0. +0.j , 0. +0.j ], + [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ], + [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ], + [-12.5-17.20477401j, 0. +0.j , 0. +0.j ]]) """ return rfftn(a, s, axes, norm) @@ -1399,5 +1408,15 @@ def irfft2(a, s=None, axes=(-2, -1), norm=None): This is really `irfftn` with different defaults. For more details see `irfftn`. + Examples + -------- + >>> a = np.mgrid[:5, :5][0] + >>> A = np.fft.rfft2(a) + >>> np.fft.irfft2(A, s=a.shape) + array([[0., 0., 0., 0., 0.], + [1., 1., 1., 1., 1.], + [2., 2., 2., 2., 2.], + [3., 3., 3., 3., 3.], + [4., 4., 4., 4., 4.]]) """ return irfftn(a, s, axes, norm) diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py index af8e28e42..efebb5fb7 100644 --- a/numpy/lib/npyio.py +++ b/numpy/lib/npyio.py @@ -539,10 +539,11 @@ def _savez_dispatcher(file, *args, **kwds): def savez(file, *args, **kwds): """Save several arrays into a single file in uncompressed ``.npz`` format. - If arguments are passed in with no keywords, the corresponding variable - names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword - arguments are given, the corresponding variable names, in the ``.npz`` - file will match the keyword names. + Provide arrays as keyword arguments to store them under the + corresponding name in the output file: ``savez(fn, x=x, y=y)``. + + If arrays are specified as positional arguments, i.e., ``savez(fn, + x, y)``, their names will be `arr_0`, `arr_1`, etc. Parameters ---------- @@ -552,13 +553,12 @@ def savez(file, *args, **kwds): ``.npz`` extension will be appended to the filename if it is not already there. args : Arguments, optional - Arrays to save to the file. Since it is not possible for Python to - know the names of the arrays outside `savez`, the arrays will be saved - with names "arr_0", "arr_1", and so on. These arguments can be any - expression. + Arrays to save to the file. Please use keyword arguments (see + `kwds` below) to assign names to arrays. Arrays specified as + args will be named "arr_0", "arr_1", and so on. kwds : Keyword arguments, optional - Arrays to save to the file. Arrays will be saved in the file with the - keyword names. + Arrays to save to the file. Each array will be saved to the + output file with its corresponding keyword name. Returns ------- @@ -613,6 +613,7 @@ def savez(file, *args, **kwds): ['x', 'y'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + """ _savez(file, args, kwds, False) @@ -627,9 +628,11 @@ def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. - If keyword arguments are given, then filenames are taken from the keywords. - If arguments are passed in with no keywords, then stored filenames are - arr_0, arr_1, etc. + Provide arrays as keyword arguments to store them under the + corresponding name in the output file: ``savez(fn, x=x, y=y)``. + + If arrays are specified as positional arguments, i.e., ``savez(fn, + x, y)``, their names will be `arr_0`, `arr_1`, etc. Parameters ---------- @@ -639,13 +642,12 @@ def savez_compressed(file, *args, **kwds): ``.npz`` extension will be appended to the filename if it is not already there. args : Arguments, optional - Arrays to save to the file. Since it is not possible for Python to - know the names of the arrays outside `savez`, the arrays will be saved - with names "arr_0", "arr_1", and so on. These arguments can be any - expression. + Arrays to save to the file. Please use keyword arguments (see + `kwds` below) to assign names to arrays. Arrays specified as + args will be named "arr_0", "arr_1", and so on. kwds : Keyword arguments, optional - Arrays to save to the file. Arrays will be saved in the file with the - keyword names. + Arrays to save to the file. Each array will be saved to the + output file with its corresponding keyword name. Returns ------- diff --git a/numpy/random/_generator.pyx b/numpy/random/_generator.pyx index 7ffa36775..e00bc4d98 100644 --- a/numpy/random/_generator.pyx +++ b/numpy/random/_generator.pyx @@ -859,7 +859,8 @@ cdef class Generator: greater than or equal to low. The default value is 0. high : float or array_like of floats Upper boundary of the output interval. All values generated will be - less than high. The default value is 1.0. + less than high. high - low must be non-negative. The default value + is 1.0. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), @@ -885,10 +886,6 @@ cdef class Generator: anywhere within the interval ``[a, b)``, and zero elsewhere. When ``high`` == ``low``, values of ``low`` will be returned. - If ``high`` < ``low``, the results are officially undefined - and may eventually raise an error, i.e. do not rely on this - function to behave when passed arguments satisfying that - inequality condition. Examples -------- @@ -914,7 +911,7 @@ cdef class Generator: """ cdef bint is_scalar = True cdef np.ndarray alow, ahigh, arange - cdef double _low, _high, range + cdef double _low, _high, rng cdef object temp alow = <np.ndarray>np.PyArray_FROM_OTF(low, np.NPY_DOUBLE, np.NPY_ALIGNED) @@ -923,13 +920,13 @@ cdef class Generator: if np.PyArray_NDIM(alow) == np.PyArray_NDIM(ahigh) == 0: _low = PyFloat_AsDouble(low) _high = PyFloat_AsDouble(high) - range = _high - _low - if not np.isfinite(range): - raise OverflowError('Range exceeds valid bounds') + rng = _high - _low + if not np.isfinite(rng): + raise OverflowError('high - low range exceeds valid bounds') return cont(&random_uniform, &self._bitgen, size, self.lock, 2, _low, '', CONS_NONE, - range, '', CONS_NONE, + rng, 'high - low', CONS_NON_NEGATIVE, 0.0, '', CONS_NONE, None) @@ -943,7 +940,7 @@ cdef class Generator: raise OverflowError('Range exceeds valid bounds') return cont(&random_uniform, &self._bitgen, size, self.lock, 2, alow, '', CONS_NONE, - arange, '', CONS_NONE, + arange, 'high - low', CONS_NON_NEGATIVE, 0.0, '', CONS_NONE, None) diff --git a/numpy/random/tests/test_generator_mt19937.py b/numpy/random/tests/test_generator_mt19937.py index b69cd38d4..c4fb5883c 100644 --- a/numpy/random/tests/test_generator_mt19937.py +++ b/numpy/random/tests/test_generator_mt19937.py @@ -1666,6 +1666,21 @@ class TestRandomDist: # DBL_MAX by increasing fmin a bit random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) + def test_uniform_zero_range(self): + func = random.uniform + result = func(1.5, 1.5) + assert_allclose(result, 1.5) + result = func([0.0, np.pi], [0.0, np.pi]) + assert_allclose(result, [0.0, np.pi]) + result = func([[2145.12], [2145.12]], [2145.12, 2145.12]) + assert_allclose(result, 2145.12 + np.zeros((2, 2))) + + def test_uniform_neg_range(self): + func = random.uniform + assert_raises(ValueError, func, 2, 1) + assert_raises(ValueError, func, [1, 2], [1, 1]) + assert_raises(ValueError, func, [[0, 1],[2, 3]], 2) + def test_scalar_exception_propagation(self): # Tests that exceptions are correctly propagated in distributions # when called with objects that throw exceptions when converted to diff --git a/numpy/tests/test_reloading.py b/numpy/tests/test_reloading.py index 61ae91b00..5c4309f4a 100644 --- a/numpy/tests/test_reloading.py +++ b/numpy/tests/test_reloading.py @@ -1,4 +1,4 @@ -from numpy.testing import assert_raises, assert_, assert_equal +from numpy.testing import assert_raises, assert_warns, assert_, assert_equal from numpy.compat import pickle import sys @@ -16,13 +16,15 @@ def test_numpy_reloading(): VisibleDeprecationWarning = np.VisibleDeprecationWarning ModuleDeprecationWarning = np.ModuleDeprecationWarning - reload(np) + with assert_warns(UserWarning): + reload(np) assert_(_NoValue is np._NoValue) assert_(ModuleDeprecationWarning is np.ModuleDeprecationWarning) assert_(VisibleDeprecationWarning is np.VisibleDeprecationWarning) assert_raises(RuntimeError, reload, numpy._globals) - reload(np) + with assert_warns(UserWarning): + reload(np) assert_(_NoValue is np._NoValue) assert_(ModuleDeprecationWarning is np.ModuleDeprecationWarning) assert_(VisibleDeprecationWarning is np.VisibleDeprecationWarning) @@ -45,13 +47,15 @@ def test_full_reimport(): # This is generally unsafe, especially, since we also reload the C-modules. code = textwrap.dedent(r""" import sys + from pytest import warns import numpy as np for k in list(sys.modules.keys()): if "numpy" in k: del sys.modules[k] - import numpy as np + with warns(UserWarning): + import numpy as np """) p = subprocess.run([sys.executable, '-c', code]) - assert p.returncode == 0 + |