summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
Diffstat (limited to 'numpy')
-rw-r--r--numpy/lib/arraysetops.py24
-rw-r--r--numpy/lib/tests/test_arraysetops.py25
2 files changed, 32 insertions, 17 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index 5880ea154..d84455a8f 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -312,12 +312,12 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
return_indices : bool
- If True, the indices which correspond to the intersection of the
- two arrays are returned. The first instance of a value is used
- if there are multiple. Default is False.
-
- .. versionadded:: 1.15.0
-
+ If True, the indices which correspond to the intersection of the two
+ arrays are returned. The first instance of a value is used if there are
+ multiple. Default is False.
+
+ .. versionadded:: 1.15.0
+
Returns
-------
intersect1d : ndarray
@@ -326,7 +326,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
The indices of the first occurrences of the common values in `ar1`.
Only provided if `return_indices` is True.
comm2 : ndarray
- The indices of the first occurrences of the common values in `ar2`.
+ The indices of the first occurrences of the common values in `ar2`.
Only provided if `return_indices` is True.
@@ -345,7 +345,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
>>> from functools import reduce
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
array([3])
-
+
To return the indices of the values common to the input arrays
along with the intersected values:
>>> x = np.array([1, 1, 2, 3, 4])
@@ -355,8 +355,11 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
(array([0, 2, 4]), array([1, 0, 2]))
>>> xy, x[x_ind], y[y_ind]
(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
-
+
"""
+ ar1 = np.asanyarray(ar1)
+ ar2 = np.asanyarray(ar2)
+
if not assume_unique:
if return_indices:
ar1, ind1 = unique(ar1, return_index=True)
@@ -367,7 +370,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
else:
ar1 = ar1.ravel()
ar2 = ar2.ravel()
-
+
aux = np.concatenate((ar1, ar2))
if return_indices:
aux_sort_indices = np.argsort(aux, kind='mergesort')
@@ -389,6 +392,7 @@ def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
else:
return int1d
+
def setxor1d(ar1, ar2, assume_unique=False):
"""
Find the set exclusive-or of two arrays.
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py
index dace5ade8..c76afb8e5 100644
--- a/numpy/lib/tests/test_arraysetops.py
+++ b/numpy/lib/tests/test_arraysetops.py
@@ -30,19 +30,30 @@ class TestSetOps(object):
ed = np.array([1, 2, 5])
c = intersect1d(a, b)
assert_array_equal(c, ed)
-
assert_array_equal([], intersect1d([], []))
-
+
+ def test_intersect1d_array_like(self):
+ # See gh-11772
+ class Test(object):
+ def __array__(self):
+ return np.arange(3)
+
+ a = Test()
+ res = intersect1d(a, a)
+ assert_array_equal(res, a)
+ res = intersect1d([1, 2, 3], [1, 2, 3])
+ assert_array_equal(res, [1, 2, 3])
+
def test_intersect1d_indices(self):
# unique inputs
- a = np.array([1, 2, 3, 4])
+ a = np.array([1, 2, 3, 4])
b = np.array([2, 1, 4, 6])
c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True)
ee = np.array([1, 2, 4])
assert_array_equal(c, ee)
assert_array_equal(a[i1], ee)
assert_array_equal(b[i2], ee)
-
+
# non-unique inputs
a = np.array([1, 2, 2, 3, 4, 3, 2])
b = np.array([1, 8, 4, 2, 2, 3, 2, 3])
@@ -51,7 +62,7 @@ class TestSetOps(object):
assert_array_equal(c, ef)
assert_array_equal(a[i1], ef)
assert_array_equal(b[i2], ef)
-
+
# non1d, unique inputs
a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]])
b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]])
@@ -61,7 +72,7 @@ class TestSetOps(object):
ea = np.array([2, 6, 7, 8])
assert_array_equal(ea, a[ui1])
assert_array_equal(ea, b[ui2])
-
+
# non1d, not assumed to be uniqueinputs
a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]])
b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]])
@@ -71,7 +82,7 @@ class TestSetOps(object):
ea = np.array([2, 7, 8])
assert_array_equal(ea, a[ui1])
assert_array_equal(ea, b[ui2])
-
+
def test_setxor1d(self):
a = np.array([5, 7, 1, 2])
b = np.array([2, 4, 3, 1, 5])