summaryrefslogtreecommitdiff
path: root/numpy
diff options
context:
space:
mode:
Diffstat (limited to 'numpy')
-rw-r--r--numpy/core/_add_newdocs.py376
-rw-r--r--numpy/core/_internal.py96
-rw-r--r--numpy/core/arrayprint.py36
-rw-r--r--numpy/core/code_generators/ufunc_docstrings.py69
-rw-r--r--numpy/core/defchararray.py64
-rw-r--r--numpy/core/einsumfunc.py86
-rw-r--r--numpy/core/fromnumeric.py66
-rw-r--r--numpy/core/function_base.py33
-rw-r--r--numpy/core/memmap.py6
-rw-r--r--numpy/core/multiarray.py40
-rw-r--r--numpy/core/numeric.py199
-rw-r--r--numpy/core/numerictypes.py31
-rw-r--r--numpy/core/records.py41
-rw-r--r--numpy/core/shape_base.py28
-rw-r--r--numpy/core/src/common/ufunc_override.c24
-rw-r--r--numpy/core/src/common/ufunc_override.h2
-rw-r--r--numpy/core/src/multiarray/common.c8
-rw-r--r--numpy/core/src/multiarray/ctors.c2
-rw-r--r--numpy/core/src/multiarray/descriptor.c9
-rw-r--r--numpy/core/src/multiarray/lowlevel_strided_loops.c.src12
-rw-r--r--numpy/core/src/multiarray/methods.c13
-rw-r--r--numpy/core/src/multiarray/multiarraymodule.c31
-rw-r--r--numpy/core/src/umath/loops.c.src12
-rw-r--r--numpy/core/src/umath/override.c2
-rw-r--r--numpy/core/src/umath/simd.inc.src108
-rw-r--r--numpy/core/src/umath/umathmodule.c4
-rw-r--r--numpy/core/tests/test_multiarray.py87
-rw-r--r--numpy/ctypeslib.py4
-rw-r--r--numpy/distutils/ccompiler.py12
-rw-r--r--numpy/distutils/exec_command.py23
-rw-r--r--numpy/doc/glossary.py2
-rw-r--r--numpy/doc/structured_arrays.py9
-rw-r--r--numpy/fft/fftpack.py126
-rw-r--r--numpy/fft/helper.py6
-rw-r--r--numpy/lib/_datasource.py24
-rw-r--r--numpy/lib/_iotools.py24
-rw-r--r--numpy/lib/_version.py5
-rw-r--r--numpy/lib/arraypad.py4
-rw-r--r--numpy/lib/arraysetops.py26
-rw-r--r--numpy/lib/arrayterator.py7
-rw-r--r--numpy/lib/financial.py26
-rw-r--r--numpy/lib/function_base.py322
-rw-r--r--numpy/lib/histograms.py9
-rw-r--r--numpy/lib/index_tricks.py10
-rw-r--r--numpy/lib/nanfunctions.py101
-rw-r--r--numpy/lib/npyio.py58
-rw-r--r--numpy/lib/polynomial.py43
-rw-r--r--numpy/lib/recfunctions.py102
-rw-r--r--numpy/lib/scimath.py45
-rw-r--r--numpy/lib/shape_base.py170
-rw-r--r--numpy/lib/twodim_base.py47
-rw-r--r--numpy/lib/type_check.py37
-rw-r--r--numpy/lib/ufunclike.py12
-rw-r--r--numpy/lib/utils.py18
-rw-r--r--numpy/linalg/linalg.py156
-rw-r--r--numpy/ma/core.py1009
-rw-r--r--numpy/ma/extras.py259
-rw-r--r--numpy/ma/tests/test_core.py4
-rw-r--r--numpy/matlib.py50
-rw-r--r--numpy/matrixlib/defmatrix.py45
-rw-r--r--numpy/polynomial/chebyshev.py38
-rw-r--r--numpy/polynomial/hermite.py48
-rw-r--r--numpy/polynomial/hermite_e.py45
-rw-r--r--numpy/polynomial/laguerre.py30
-rw-r--r--numpy/polynomial/legendre.py41
-rw-r--r--numpy/polynomial/polynomial.py53
-rw-r--r--numpy/polynomial/polyutils.py30
-rw-r--r--numpy/random/mtrand/mtrand.pyx86
-rw-r--r--numpy/random/mtrand/numpy.pxd2
-rw-r--r--numpy/testing/_private/utils.py3
-rw-r--r--numpy/tests/test_ctypeslib.py13
71 files changed, 2542 insertions, 2127 deletions
diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py
index 668aee935..513415e09 100644
--- a/numpy/core/_add_newdocs.py
+++ b/numpy/core/_add_newdocs.py
@@ -49,7 +49,7 @@ add_newdoc('numpy.core', 'flatiter',
>>> x = np.arange(6).reshape(2, 3)
>>> fl = x.flat
>>> type(fl)
- <type 'numpy.flatiter'>
+ <class 'numpy.flatiter'>
>>> for item in fl:
... print(item)
...
@@ -320,71 +320,68 @@ add_newdoc('numpy.core', 'nditer',
Here is how we might write an ``iter_add`` function, using the
Python iterator protocol::
- def iter_add_py(x, y, out=None):
- addop = np.add
- it = np.nditer([x, y, out], [],
- [['readonly'], ['readonly'], ['writeonly','allocate']])
- with it:
- for (a, b, c) in it:
- addop(a, b, out=c)
- return it.operands[2]
+ >>> def iter_add_py(x, y, out=None):
+ ... addop = np.add
+ ... it = np.nditer([x, y, out], [],
+ ... [['readonly'], ['readonly'], ['writeonly','allocate']])
+ ... with it:
+ ... for (a, b, c) in it:
+ ... addop(a, b, out=c)
+ ... return it.operands[2]
Here is the same function, but following the C-style pattern::
- def iter_add(x, y, out=None):
- addop = np.add
-
- it = np.nditer([x, y, out], [],
- [['readonly'], ['readonly'], ['writeonly','allocate']])
- with it:
- while not it.finished:
- addop(it[0], it[1], out=it[2])
- it.iternext()
-
- return it.operands[2]
+ >>> def iter_add(x, y, out=None):
+ ... addop = np.add
+ ... it = np.nditer([x, y, out], [],
+ ... [['readonly'], ['readonly'], ['writeonly','allocate']])
+ ... with it:
+ ... while not it.finished:
+ ... addop(it[0], it[1], out=it[2])
+ ... it.iternext()
+ ... return it.operands[2]
Here is an example outer product function::
- def outer_it(x, y, out=None):
- mulop = np.multiply
-
- it = np.nditer([x, y, out], ['external_loop'],
- [['readonly'], ['readonly'], ['writeonly', 'allocate']],
- op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
- [-1] * x.ndim + list(range(y.ndim)),
- None])
- with it:
- for (a, b, c) in it:
- mulop(a, b, out=c)
- return it.operands[2]
-
- >>> a = np.arange(2)+1
- >>> b = np.arange(3)+1
- >>> outer_it(a,b)
- array([[1, 2, 3],
- [2, 4, 6]])
+ >>> def outer_it(x, y, out=None):
+ ... mulop = np.multiply
+ ... it = np.nditer([x, y, out], ['external_loop'],
+ ... [['readonly'], ['readonly'], ['writeonly', 'allocate']],
+ ... op_axes=[list(range(x.ndim)) + [-1] * y.ndim,
+ ... [-1] * x.ndim + list(range(y.ndim)),
+ ... None])
+ ... with it:
+ ... for (a, b, c) in it:
+ ... mulop(a, b, out=c)
+ ... return it.operands[2]
+
+ >>> a = np.arange(2)+1
+ >>> b = np.arange(3)+1
+ >>> outer_it(a,b)
+ array([[1, 2, 3],
+ [2, 4, 6]])
Here is an example function which operates like a "lambda" ufunc::
- def luf(lamdaexpr, *args, **kwargs):
- "luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)"
- nargs = len(args)
- op = (kwargs.get('out',None),) + args
- it = np.nditer(op, ['buffered','external_loop'],
- [['writeonly','allocate','no_broadcast']] +
- [['readonly','nbo','aligned']]*nargs,
- order=kwargs.get('order','K'),
- casting=kwargs.get('casting','safe'),
- buffersize=kwargs.get('buffersize',0))
- while not it.finished:
- it[0] = lamdaexpr(*it[1:])
- it.iternext()
- return it.operands[0]
-
- >>> a = np.arange(5)
- >>> b = np.ones(5)
- >>> luf(lambda i,j:i*i + j/2, a, b)
- array([ 0.5, 1.5, 4.5, 9.5, 16.5])
+ >>> def luf(lamdaexpr, *args, **kwargs):
+ ... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)'''
+ ... nargs = len(args)
+ ... op = (kwargs.get('out',None),) + args
+ ... it = np.nditer(op, ['buffered','external_loop'],
+ ... [['writeonly','allocate','no_broadcast']] +
+ ... [['readonly','nbo','aligned']]*nargs,
+ ... order=kwargs.get('order','K'),
+ ... casting=kwargs.get('casting','safe'),
+ ... buffersize=kwargs.get('buffersize',0))
+ ... while not it.finished:
+ ... it[0] = lamdaexpr(*it[1:])
+ ... it.iternext()
+ ... return it.operands[0]
+
+ >>> a = np.arange(5)
+ >>> b = np.ones(5)
+ >>> luf(lambda i,j:i*i + j/2, a, b)
+ array([ 0.5, 1.5, 4.5, 9.5, 16.5])
If operand flags `"writeonly"` or `"readwrite"` are used the operands may
be views into the original data with the `WRITEBACKIFCOPY` flag. In this case
@@ -393,16 +390,16 @@ add_newdoc('numpy.core', 'nditer',
data will be written back to the original data when the `__exit__`
function is called but not before:
- >>> a = np.arange(6, dtype='i4')[::-2]
- >>> with nditer(a, [],
- ... [['writeonly', 'updateifcopy']],
- ... casting='unsafe',
- ... op_dtypes=[np.dtype('f4')]) as i:
- ... x = i.operands[0]
- ... x[:] = [-1, -2, -3]
- ... # a still unchanged here
- >>> a, x
- array([-1, -2, -3]), array([-1, -2, -3])
+ >>> a = np.arange(6, dtype='i4')[::-2]
+ >>> with np.nditer(a, [],
+ ... [['writeonly', 'updateifcopy']],
+ ... casting='unsafe',
+ ... op_dtypes=[np.dtype('f4')]) as i:
+ ... x = i.operands[0]
+ ... x[:] = [-1, -2, -3]
+ ... # a still unchanged here
+ >>> a, x
+ (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32))
It is important to note that once the iterator is exited, dangling
references (like `x` in the example) may or may not share data with
@@ -428,10 +425,10 @@ add_newdoc('numpy.core', 'nditer', ('copy',
>>> x = np.arange(10)
>>> y = x + 1
>>> it = np.nditer([x, y])
- >>> it.next()
+ >>> next(it)
(array(0), array(1))
>>> it2 = it.copy()
- >>> it2.next()
+ >>> next(it2)
(array(1), array(2))
"""))
@@ -544,7 +541,6 @@ add_newdoc('numpy.core', 'nested_iters',
... print(i.multi_index)
... for y in j:
... print('', j.multi_index, y)
-
(0,)
(0, 0) 0
(0, 1) 1
@@ -617,9 +613,9 @@ add_newdoc('numpy.core', 'broadcast',
>>> out = np.empty(b.shape)
>>> out.flat = [u+v for (u,v) in b]
>>> out
- array([[ 5., 6., 7.],
- [ 6., 7., 8.],
- [ 7., 8., 9.]])
+ array([[5., 6., 7.],
+ [6., 7., 8.],
+ [7., 8., 9.]])
Compare against built-in broadcasting:
@@ -643,7 +639,7 @@ add_newdoc('numpy.core', 'broadcast', ('index',
>>> b = np.broadcast(x, y)
>>> b.index
0
- >>> b.next(), b.next(), b.next()
+ >>> next(b), next(b), next(b)
((1, 4), (1, 5), (1, 6))
>>> b.index
3
@@ -762,11 +758,11 @@ add_newdoc('numpy.core', 'broadcast', ('reset',
Examples
--------
>>> x = np.array([1, 2, 3])
- >>> y = np.array([[4], [5], [6]]
+ >>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast(x, y)
>>> b.index
0
- >>> b.next(), b.next(), b.next()
+ >>> next(b), next(b), next(b)
((1, 4), (2, 4), (3, 4))
>>> b.index
3
@@ -1189,32 +1185,32 @@ add_newdoc('numpy.core.multiarray', 'fromfile',
--------
Construct an ndarray:
- >>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
+ >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]),
... ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],
- dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
+ dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
Save the raw data to disk:
- >>> import os
- >>> fname = os.tmpnam()
+ >>> import tempfile
+ >>> fname = tempfile.mkstemp()[1]
>>> x.tofile(fname)
Read the raw data from disk:
>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],
- dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
+ dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
The recommended way to store and load data:
>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],
- dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])
+ dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])
""")
@@ -1242,17 +1238,16 @@ add_newdoc('numpy.core.multiarray', 'frombuffer',
>>> dt = np.dtype(int)
>>> dt = dt.newbyteorder('>')
- >>> np.frombuffer(buf, dtype=dt)
+ >>> np.frombuffer(buf, dtype=dt) # doctest: +SKIP
The data of the resulting array will not be byteswapped, but will be
interpreted correctly.
Examples
--------
- >>> s = 'hello world'
+ >>> s = b'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
- array(['w', 'o', 'r', 'l', 'd'],
- dtype='|S1')
+ array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1')
>>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
@@ -1941,8 +1936,8 @@ add_newdoc('numpy.core.multiarray', 'ndarray',
First mode, `buffer` is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
- array([[ -1.13698227e+002, 4.25087011e-303],
- [ 2.88528414e-306, 3.27025015e-309]]) #random
+ array([[0.0e+000, 0.0e+000], # random
+ [ nan, 2.5e-323]])
Second mode:
@@ -2047,14 +2042,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes',
.. automethod:: numpy.core._internal._ctypes.strides_as
- Be careful using the ctypes attribute - especially on temporary
- arrays or arrays constructed on the fly. For example, calling
- ``(a+b).ctypes.data_as(ctypes.c_void_p)`` returns a pointer to memory
- that is invalid because the array created as (a+b) is deallocated
- before the next Python statement. You can avoid this problem using
- either ``c=a+b`` or ``ct=(a+b).ctypes``. In the latter case, ct will
- hold a reference to the array until ct is deleted or re-assigned.
-
If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
@@ -2256,7 +2243,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('flat',
>>> x.T.flat[3]
5
>>> type(x.flat)
- <type 'numpy.flatiter'>
+ <class 'numpy.flatiter'>
An assignment example:
@@ -2706,7 +2693,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('astype',
--------
>>> x = np.array([1, 2, 2.5])
>>> x
- array([ 1. , 2. , 2.5])
+ array([1. , 2. , 2.5])
>>> x.astype(int)
array([1, 2, 2])
@@ -2737,19 +2724,20 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('byteswap',
Examples
--------
>>> A = np.array([1, 256, 8755], dtype=np.int16)
- >>> map(hex, A)
+ >>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([ 256, 1, 13090], dtype=int16)
- >>> map(hex, A)
+ >>> list(map(hex, A))
['0x100', '0x1', '0x3322']
Arrays of strings are not swapped
>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
- array(['ceg', 'fac'],
- dtype='|S3')
+ Traceback (most recent call last):
+ ...
+ UnicodeDecodeError: ...
"""))
@@ -2937,14 +2925,14 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('dot',
>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
- array([[ 2., 2.],
- [ 2., 2.]])
+ array([[2., 2.],
+ [2., 2.]])
This array method can be conveniently chained:
>>> a.dot(b).dot(b)
- array([[ 8., 8.],
- [ 8., 8.]])
+ array([[8., 8.],
+ [8., 8.]])
"""))
@@ -2997,7 +2985,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('fill',
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
- array([ 1., 1.])
+ array([1., 1.])
"""))
@@ -3066,18 +3054,18 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('getfield',
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
- array([[ 1.+1.j, 0.+0.j],
- [ 0.+0.j, 2.+4.j]])
+ array([[1.+1.j, 0.+0.j],
+ [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
- array([[ 1., 0.],
- [ 0., 2.]])
+ array([[1., 0.],
+ [0., 2.]])
By choosing an offset of 8 bytes we can select the complex part of the
array for our view:
>>> x.getfield(np.float64, offset=8)
- array([[ 1., 0.],
- [ 0., 4.]])
+ array([[1., 0.],
+ [0., 4.]])
"""))
@@ -3123,19 +3111,20 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('item',
Examples
--------
+ >>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
- array([[3, 1, 7],
- [2, 8, 3],
- [8, 5, 3]])
+ array([[2, 2, 6],
+ [1, 3, 6],
+ [1, 0, 1]])
>>> x.item(3)
- 2
+ 1
>>> x.item(7)
- 5
+ 0
>>> x.item((0, 1))
- 1
+ 2
>>> x.item((2, 2))
- 3
+ 1
"""))
@@ -3171,17 +3160,18 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('itemset',
Examples
--------
+ >>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
- array([[3, 1, 7],
- [2, 8, 3],
- [8, 5, 3]])
+ array([[2, 2, 6],
+ [1, 3, 6],
+ [1, 0, 1]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
- array([[3, 1, 7],
- [2, 0, 3],
- [8, 5, 9]])
+ array([[2, 2, 6],
+ [1, 0, 6],
+ [1, 0, 9]])
"""))
@@ -3622,7 +3612,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('resize',
>>> a.resize((1, 1))
Traceback (most recent call last):
...
- ValueError: cannot resize an array that has been referenced ...
+ ValueError: cannot resize an array that references or is referenced ...
Unless `refcheck` is False:
@@ -3695,23 +3685,23 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('setfield',
--------
>>> x = np.eye(3)
>>> x.getfield(np.float64)
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
[3, 3, 3],
- [3, 3, 3]])
+ [3, 3, 3]], dtype=int32)
>>> x
- array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
- [ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
- [ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
+ array([[1.0e+000, 1.5e-323, 1.5e-323],
+ [1.5e-323, 1.0e+000, 1.5e-323],
+ [1.5e-323, 1.5e-323, 1.0e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
"""))
@@ -3764,6 +3754,9 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('setflags',
Examples
--------
+ >>> y = np.array([[3, 1, 7],
+ ... [2, 0, 0],
+ ... [8, 5, 9]])
>>> y
array([[3, 1, 7],
[2, 0, 0],
@@ -3843,8 +3836,8 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('sort',
>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
- array([('c', 1), ('a', 2)],
- dtype=[('x', '|S1'), ('y', '<i4')])
+ array([(b'c', 1), (b'a', 2)],
+ dtype=[('x', 'S1'), ('y', '<i8')])
"""))
@@ -3900,6 +3893,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('partition',
array([2, 1, 3, 4])
>>> a.partition((1, 3))
+ >>> a
array([1, 2, 3, 4])
"""))
@@ -4081,13 +4075,13 @@ tobytesdoc = """
Examples
--------
- >>> x = np.array([[0, 1], [2, 3]])
+ >>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
- b'\\x00\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x03\\x00\\x00\\x00'
+ b'\\x00\\x00\\x01\\x00\\x02\\x00\\x03\\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
- b'\\x00\\x00\\x00\\x00\\x02\\x00\\x00\\x00\\x01\\x00\\x00\\x00\\x03\\x00\\x00\\x00'
+ b'\\x00\\x00\\x02\\x00\\x01\\x00\\x03\\x00'
"""
@@ -4237,7 +4231,7 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
- <class 'numpy.matrixlib.defmatrix.matrix'>
+ <class 'numpy.matrix'>
Creating a view on a structured array so it can be used in calculations
@@ -4247,19 +4241,19 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
array([[1, 2],
[3, 4]], dtype=int8)
>>> xv.mean(0)
- array([ 2., 3.])
+ array([2., 3.])
Making changes to the view changes the underlying array
>>> xv[0,1] = 20
- >>> print(x)
- [(1, 20) (3, 4)]
+ >>> x
+ array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])
Using a view to convert an array to a recarray:
>>> z = x.view(np.recarray)
>>> z.a
- array([1], dtype=int8)
+ array([1, 3], dtype=int8)
Views share data:
@@ -4277,8 +4271,8 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('view',
[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
- File "<stdin>", line 1, in <module>
- ValueError: new type not compatible with array.
+ ...
+ ValueError: To change to a dtype of a different size, the array must be C-contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
@@ -4329,10 +4323,9 @@ add_newdoc('numpy.core.umath', 'frompyfunc',
>>> oct_array = np.frompyfunc(oct, 1, 1)
>>> oct_array(np.array((10, 30, 100)))
- array([012, 036, 0144], dtype=object)
+ array(['0o12', '0o36', '0o144'], dtype=object)
>>> np.array((oct(10), oct(30), oct(100))) # for comparison
- array(['012', '036', '0144'],
- dtype='|S4')
+ array(['0o12', '0o36', '0o144'], dtype='<U5')
""")
@@ -4394,7 +4387,7 @@ add_newdoc('numpy.core.umath', 'geterrobj',
>>> np.base_repr(np.geterrobj()[1], 8)
'0'
>>> old_err = np.seterr(divide='warn', over='log', under='call',
- invalid='print')
+ ... invalid='print')
>>> np.base_repr(np.geterrobj()[1], 8)
'4351'
@@ -4540,7 +4533,10 @@ add_newdoc('numpy.core.multiarray', 'packbits',
... [0,0,1]]])
>>> b = np.packbits(a, axis=-1)
>>> b
- array([[[160],[64]],[[192],[32]]], dtype=uint8)
+ array([[[160],
+ [ 64]],
+ [[192],
+ [ 32]]], dtype=uint8)
Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
and 32 = 0010 0000.
@@ -4981,7 +4977,7 @@ add_newdoc('numpy.core', 'ufunc', ('reduce',
>>> np.add.reduce([10], initial=5)
15
- >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initializer=10)
+ >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10)
array([14., 14.])
Allows reductions of empty arrays where they would normally fail, i.e.
@@ -5054,23 +5050,23 @@ add_newdoc('numpy.core', 'ufunc', ('accumulate',
>>> I = np.eye(2)
>>> I
- array([[ 1., 0.],
- [ 0., 1.]])
+ array([[1., 0.],
+ [0., 1.]])
Accumulate along axis 0 (rows), down columns:
>>> np.add.accumulate(I, 0)
- array([[ 1., 0.],
- [ 1., 1.]])
+ array([[1., 0.],
+ [1., 1.]])
>>> np.add.accumulate(I) # no axis specified = axis zero
- array([[ 1., 0.],
- [ 1., 1.]])
+ array([[1., 0.],
+ [1., 1.]])
Accumulate along axis 1 (columns), through rows:
>>> np.add.accumulate(I, 1)
- array([[ 1., 1.],
- [ 0., 1.]])
+ array([[1., 1.],
+ [0., 1.]])
"""))
@@ -5147,10 +5143,10 @@ add_newdoc('numpy.core', 'ufunc', ('reduceat',
>>> x = np.linspace(0, 15, 16).reshape(4,4)
>>> x
- array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]])
+ array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])
::
@@ -5162,11 +5158,11 @@ add_newdoc('numpy.core', 'ufunc', ('reduceat',
# [row1 + row2 + row3 + row4]
>>> np.add.reduceat(x, [0, 3, 1, 2, 0])
- array([[ 12., 15., 18., 21.],
- [ 12., 13., 14., 15.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.],
- [ 24., 28., 32., 36.]])
+ array([[12., 15., 18., 21.],
+ [12., 13., 14., 15.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [24., 28., 32., 36.]])
::
@@ -5174,10 +5170,10 @@ add_newdoc('numpy.core', 'ufunc', ('reduceat',
# [col1 * col2 * col3, col4]
>>> np.multiply.reduceat(x, [0, 3], 1)
- array([[ 0., 3.],
- [ 120., 7.],
- [ 720., 11.],
- [ 2184., 15.]])
+ array([[ 0., 3.],
+ [ 120., 7.],
+ [ 720., 11.],
+ [2184., 15.]])
"""))
@@ -5276,14 +5272,14 @@ add_newdoc('numpy.core', 'ufunc', ('at',
>>> a = np.array([1, 2, 3, 4])
>>> np.negative.at(a, [0, 1])
- >>> print(a)
- array([-1, -2, 3, 4])
+ >>> a
+ array([-1, -2, 3, 4])
Increment items 0 and 1, and increment item 2 twice:
>>> a = np.array([1, 2, 3, 4])
>>> np.add.at(a, [0, 1, 2, 2], 1)
- >>> print(a)
+ >>> a
array([2, 3, 5, 4])
Add items 0 and 1 in first array to second array,
@@ -5292,7 +5288,7 @@ add_newdoc('numpy.core', 'ufunc', ('at',
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([1, 2])
>>> np.add.at(a, [0, 1], b)
- >>> print(a)
+ >>> a
array([2, 4, 3, 4])
"""))
@@ -5357,13 +5353,13 @@ add_newdoc('numpy.core.multiarray', 'dtype',
Structured type, two fields: the first field contains an unsigned int, the
second an int32:
- >>> np.dtype([('f1', np.uint), ('f2', np.int32)])
- dtype([('f1', '<u4'), ('f2', '<i4')])
+ >>> np.dtype([('f1', np.uint64), ('f2', np.int32)])
+ dtype([('f1', '<u8'), ('f2', '<i4')])
Using array-protocol type strings:
>>> np.dtype([('a','f8'),('b','S10')])
- dtype([('a', '<f8'), ('b', '|S10')])
+ dtype([('a', '<f8'), ('b', 'S10')])
Using comma-separated field formats. The shape is (2,3):
@@ -5373,24 +5369,24 @@ add_newdoc('numpy.core.multiarray', 'dtype',
Using tuples. ``int`` is a fixed type, 3 the field's shape. ``void``
is a flexible type, here of size 10:
- >>> np.dtype([('hello',(int,3)),('world',np.void,10)])
- dtype([('hello', '<i4', 3), ('world', '|V10')])
+ >>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)])
+ dtype([('hello', '<i8', (3,)), ('world', 'V10')])
Subdivide ``int16`` into 2 ``int8``'s, called x and y. 0 and 1 are
the offsets in bytes:
>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
- dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
+ dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')]))
Using dictionaries. Two fields named 'gender' and 'age':
>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
- dtype([('gender', '|S1'), ('age', '|u1')])
+ dtype([('gender', 'S1'), ('age', 'u1')])
Offsets in bytes, here 0 and 25:
>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
- dtype([('surname', '|S25'), ('age', '|u1')])
+ dtype([('surname', 'S25'), ('age', 'u1')])
""")
@@ -5794,7 +5790,7 @@ add_newdoc('numpy.core.multiarray', 'busdaycalendar',
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
>>> # Default is Monday to Friday weekdays
... bdd.weekmask
- array([ True, True, True, True, True, False, False], dtype='bool')
+ array([ True, True, True, True, True, False, False])
>>> # Any holidays already on the weekend are removed
... bdd.holidays
array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]')
@@ -5891,7 +5887,7 @@ add_newdoc('numpy.core.multiarray', 'datetime_data',
as a timedelta
>>> np.datetime64('2010', np.datetime_data(dt_25s))
- numpy.datetime64('2010-01-01T00:00:00', '25s')
+ numpy.datetime64('2010-01-01T00:00:00','25s')
""")
diff --git a/numpy/core/_internal.py b/numpy/core/_internal.py
index 59da60253..27a3deeda 100644
--- a/numpy/core/_internal.py
+++ b/numpy/core/_internal.py
@@ -238,19 +238,68 @@ _getintp_ctype.cache = None
class _missing_ctypes(object):
def cast(self, num, obj):
- return num
+ return num.value
+
+ class c_void_p(object):
+ def __init__(self, ptr):
+ self.value = ptr
+
+
+class _unsafe_first_element_pointer(object):
+ """
+ Helper to allow viewing an array as a ctypes pointer to the first element
+
+ This avoids:
+ * dealing with strides
+ * `.view` rejecting object-containing arrays
+ * `memoryview` not supporting overlapping fields
+ """
+ def __init__(self, arr):
+ self.base = arr
+
+ @property
+ def __array_interface__(self):
+ i = dict(
+ shape=(),
+ typestr='|V0',
+ data=(self.base.__array_interface__['data'][0], False),
+ strides=(),
+ version=3,
+ )
+ return i
+
+
+def _get_void_ptr(arr):
+ """
+ Get a `ctypes.c_void_p` to arr.data, that keeps a reference to the array
+ """
+ import numpy as np
+ # convert to a 0d array that has a data pointer referrign to the start
+ # of arr. This holds a reference to arr.
+ simple_arr = np.asarray(_unsafe_first_element_pointer(arr))
+
+ # create a `char[0]` using the same memory.
+ c_arr = (ctypes.c_char * 0).from_buffer(simple_arr)
+
+ # finally cast to void*
+ return ctypes.cast(ctypes.pointer(c_arr), ctypes.c_void_p)
- def c_void_p(self, num):
- return num
class _ctypes(object):
def __init__(self, array, ptr=None):
+ self._arr = array
+
if ctypes:
self._ctypes = ctypes
+ # get a void pointer to the buffer, which keeps the array alive
+ self._data = _get_void_ptr(array)
+ assert self._data.value == ptr
else:
+ # fake a pointer-like object that holds onto the reference
self._ctypes = _missing_ctypes()
- self._arr = array
- self._data = ptr
+ self._data = self._ctypes.c_void_p(ptr)
+ self._data._objects = array
+
if self._arr.ndim == 0:
self._zerod = True
else:
@@ -263,6 +312,8 @@ class _ctypes(object):
``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
``self.data_as(ctypes.POINTER(ctypes.c_double))``.
+
+ The returned pointer will keep a reference to the array.
"""
return self._ctypes.cast(self._data, obj)
@@ -284,7 +335,8 @@ class _ctypes(object):
return None
return (obj*self._arr.ndim)(*self._arr.strides)
- def get_data(self):
+ @property
+ def data(self):
"""
A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
@@ -293,10 +345,16 @@ class _ctypes(object):
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as ``self._array_interface_['data'][0]``.
+
+ Note that unlike `data_as`, a reference will not be kept to the array:
+ code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
+ pointer to a deallocated array, and should be spelt
+ ``(a + b).ctypes.data_as(ctypes.c_void_p)``
"""
- return self._data
+ return self._data.value
- def get_shape(self):
+ @property
+ def shape(self):
"""
(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to ``dtype('p')`` on this
@@ -307,7 +365,8 @@ class _ctypes(object):
"""
return self.shape_as(_getintp_ctype())
- def get_strides(self):
+ @property
+ def strides(self):
"""
(c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
@@ -317,13 +376,20 @@ class _ctypes(object):
"""
return self.strides_as(_getintp_ctype())
- def get_as_parameter(self):
- return self._ctypes.c_void_p(self._data)
+ @property
+ def _as_parameter_(self):
+ """
+ Overrides the ctypes semi-magic method
+
+ Enables `c_func(some_array.ctypes)`
+ """
+ return self._data
- data = property(get_data)
- shape = property(get_shape)
- strides = property(get_strides)
- _as_parameter_ = property(get_as_parameter, None, doc="_as parameter_")
+ # kept for compatibility
+ get_data = data.fget
+ get_shape = shape.fget
+ get_strides = strides.fget
+ get_as_parameter = _as_parameter_.fget
def _newnames(datatype, order):
diff --git a/numpy/core/arrayprint.py b/numpy/core/arrayprint.py
index 6a71de226..7d8785c32 100644
--- a/numpy/core/arrayprint.py
+++ b/numpy/core/arrayprint.py
@@ -201,21 +201,21 @@ def set_printoptions(precision=None, threshold=None, edgeitems=None,
Floating point precision can be set:
>>> np.set_printoptions(precision=4)
- >>> print(np.array([1.123456789]))
- [ 1.1235]
+ >>> np.array([1.123456789])
+ [1.1235]
Long arrays can be summarised:
>>> np.set_printoptions(threshold=5)
- >>> print(np.arange(10))
- [0 1 2 ..., 7 8 9]
+ >>> np.arange(10)
+ array([0, 1, 2, ..., 7, 8, 9])
Small results can be suppressed:
>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)
>>> x**2 - (x + eps)**2
- array([ -4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
+ array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00])
>>> np.set_printoptions(suppress=True)
>>> x**2 - (x + eps)**2
array([-0., -0., 0., 0.])
@@ -299,9 +299,10 @@ def printoptions(*args, **kwargs):
Examples
--------
+ >>> from numpy.testing import assert_equal
>>> with np.printoptions(precision=2):
- ... print(np.array([2.0])) / 3
- [0.67]
+ ... np.array([2.0]) / 3
+ array([0.67])
The `as`-clause of the `with`-statement gives the current print options:
@@ -644,9 +645,9 @@ def array2string(a, max_line_width=None, precision=None,
Examples
--------
>>> x = np.array([1e-16,1,2,3])
- >>> print(np.array2string(x, precision=2, separator=',',
- ... suppress_small=True))
- [ 0., 1., 2., 3.]
+ >>> np.array2string(x, precision=2, separator=',',
+ ... suppress_small=True)
+ '[0.,1.,2.,3.]'
>>> x = np.arange(3.)
>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
@@ -654,7 +655,7 @@ def array2string(a, max_line_width=None, precision=None,
>>> x = np.arange(3)
>>> np.array2string(x, formatter={'int':lambda x: hex(x)})
- '[0x0L 0x1L 0x2L]'
+ '[0x0 0x1 0x2]'
"""
legacy = kwarg.pop('legacy', None)
@@ -1357,7 +1358,7 @@ def dtype_is_implied(dtype):
>>> np.core.arrayprint.dtype_is_implied(np.int8)
False
>>> np.array([1, 2, 3], np.int8)
- array([1, 2, 3], dtype=np.int8)
+ array([1, 2, 3], dtype=int8)
"""
dtype = np.dtype(dtype)
if _format_options['legacy'] == '1.13' and dtype.type == bool_:
@@ -1377,6 +1378,7 @@ def dtype_short_repr(dtype):
The intent is roughly that the following holds
>>> from numpy import *
+ >>> dt = np.int64([1, 2]).dtype
>>> assert eval(dtype_short_repr(dt)) == dt
"""
if dtype.names is not None:
@@ -1480,13 +1482,13 @@ def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
>>> np.array_repr(np.array([1,2]))
'array([1, 2])'
>>> np.array_repr(np.ma.array([0.]))
- 'MaskedArray([ 0.])'
+ 'MaskedArray([0.])'
>>> np.array_repr(np.array([], np.int32))
'array([], dtype=int32)'
>>> x = np.array([1e-6, 4e-7, 2, 3])
>>> np.array_repr(x, precision=6, suppress_small=True)
- 'array([ 0.000001, 0. , 2. , 3. ])'
+ 'array([0.000001, 0. , 2. , 3. ])'
"""
return _array_repr_implementation(
@@ -1597,8 +1599,8 @@ def set_string_function(f, repr=True):
>>> a = np.arange(10)
>>> a
HA! - What are you going to do now?
- >>> print(a)
- [0 1 2 3 4 5 6 7 8 9]
+ >>> _ = a
+ >>> # [0 1 2 3 4 5 6 7 8 9]
We can reset the function to the default:
@@ -1616,7 +1618,7 @@ def set_string_function(f, repr=True):
>>> x.__str__()
'random'
>>> x.__repr__()
- 'array([ 0, 1, 2, 3])'
+ 'array([0, 1, 2, 3])'
"""
if f is None:
diff --git a/numpy/core/code_generators/ufunc_docstrings.py b/numpy/core/code_generators/ufunc_docstrings.py
index 8a690c43d..267e63b2d 100644
--- a/numpy/core/code_generators/ufunc_docstrings.py
+++ b/numpy/core/code_generators/ufunc_docstrings.py
@@ -648,8 +648,8 @@ add_newdoc('numpy.core.umath', 'bitwise_or',
array([ 6, 5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([ 6, 5, 255])
- >>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32),
- ... np.array([4, 4, 4, 2147483647L], dtype=np.int32))
+ >>> np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32),
+ ... np.array([4, 4, 4, 2147483647], dtype=np.int32))
array([ 6, 5, 255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
array([ True, True])
@@ -837,6 +837,7 @@ add_newdoc('numpy.core.umath', 'cos',
array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
+ >>> out1 = np.array([0], dtype='d')
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
@@ -845,7 +846,7 @@ add_newdoc('numpy.core.umath', 'cos',
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
- ValueError: invalid return array shape
+ ValueError: operands could not be broadcast together with shapes (3,3) (2,2)
""")
@@ -912,7 +913,7 @@ add_newdoc('numpy.core.umath', 'degrees',
270., 300., 330.])
>>> out = np.zeros((rad.shape))
- >>> r = degrees(rad, out)
+ >>> r = np.degrees(rad, out)
>>> np.all(r == out)
True
@@ -1559,33 +1560,31 @@ add_newdoc('numpy.core.umath', 'invert',
We've seen that 13 is represented by ``00001101``.
The invert or bit-wise NOT of 13 is then:
- >>> np.invert(np.array([13], dtype=uint8))
- array([242], dtype=uint8)
+ >>> x = np.invert(np.array(13, dtype=np.uint8))
+ >>> x
+ 242
>>> np.binary_repr(x, width=8)
- '00001101'
- >>> np.binary_repr(242, width=8)
'11110010'
The result depends on the bit-width:
- >>> np.invert(np.array([13], dtype=uint16))
- array([65522], dtype=uint16)
+ >>> x = np.invert(np.array(13, dtype=np.uint16))
+ >>> x
+ 65522
>>> np.binary_repr(x, width=16)
- '0000000000001101'
- >>> np.binary_repr(65522, width=16)
'1111111111110010'
When using signed integer types the result is the two's complement of
the result for the unsigned type:
- >>> np.invert(np.array([13], dtype=int8))
+ >>> np.invert(np.array([13], dtype=np.int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'
Booleans are accepted as well:
- >>> np.invert(array([True, False]))
+ >>> np.invert(np.array([True, False]))
array([False, True])
""")
@@ -1969,7 +1968,7 @@ add_newdoc('numpy.core.umath', 'log10',
Examples
--------
>>> np.log10([1e-15, -3.])
- array([-15., NaN])
+ array([-15., nan])
""")
@@ -2361,7 +2360,7 @@ add_newdoc('numpy.core.umath', 'maximum',
[ 0.5, 2. ]])
>>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan])
- array([ NaN, NaN, NaN])
+ array([nan, nan, nan])
>>> np.maximum(np.Inf, 1)
inf
@@ -2420,7 +2419,7 @@ add_newdoc('numpy.core.umath', 'minimum',
[ 0. , 1. ]])
>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan])
- array([ NaN, NaN, NaN])
+ array([nan, nan, nan])
>>> np.minimum(-np.Inf, 1)
-inf
@@ -2480,7 +2479,7 @@ add_newdoc('numpy.core.umath', 'fmax',
[ 0.5, 2. ]])
>>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan])
- array([ 0., 0., NaN])
+ array([ 0., 0., nan])
""")
@@ -2538,7 +2537,7 @@ add_newdoc('numpy.core.umath', 'fmin',
[ 0. , 1. ]])
>>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan])
- array([ 0., 0., NaN])
+ array([ 0., 0., nan])
""")
@@ -2604,12 +2603,13 @@ add_newdoc('numpy.core.umath', 'matmul',
- Stacks of matrices are broadcast together as if the matrices
were elements, respecting the signature ``(n,k),(k,m)->(n,m)``:
- >>> a = a = np.full([9,5,7,3], True, dtype=bool)
- >>> c = np.full([9, 5, 4,3], True, dtype=bool)
+ >>> a = np.ones([9, 5, 7, 4])
+ >>> c = np.ones([9, 5, 4, 3])
>>> np.dot(a, c).shape
- (9, 5, 7, 9, 5, 4)
- >>> np.matmul(a, c).shape # n is 5, k is 3, m is 4
- (9, 5, 7, 4)
+ (9, 5, 7, 9, 5, 3)
+ >>> np.matmul(a, c).shape
+ (9, 5, 7, 3)
+ >>> # n is 7, k is 4, m is 3
The matmul function implements the semantics of the `@` operator introduced
in Python 3.5 following PEP465.
@@ -2621,7 +2621,7 @@ add_newdoc('numpy.core.umath', 'matmul',
>>> a = np.array([[1, 0],
... [0, 1]])
>>> b = np.array([[4, 1],
- ... [2, 2]]
+ ... [2, 2]])
>>> np.matmul(a, b)
array([[4, 1],
[2, 2]])
@@ -2629,7 +2629,7 @@ add_newdoc('numpy.core.umath', 'matmul',
For 2-D mixed with 1-D, the result is the usual.
>>> a = np.array([[1, 0],
- ... [0, 1]]
+ ... [0, 1]])
>>> b = np.array([1, 2])
>>> np.matmul(a, b)
array([1, 2])
@@ -3475,6 +3475,7 @@ add_newdoc('numpy.core.umath', 'sinh',
>>> # Discrepancy due to vagaries of floating point arithmetic.
>>> # Example of providing the optional output parameter
+ >>> out1 = np.array([0], dtype='d')
>>> out2 = np.sinh([0.1], out1)
>>> out2 is out1
True
@@ -3483,7 +3484,7 @@ add_newdoc('numpy.core.umath', 'sinh',
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
- ValueError: invalid return array shape
+ ValueError: operands could not be broadcast together with shapes (3,3) (2,2)
""")
@@ -3528,8 +3529,8 @@ add_newdoc('numpy.core.umath', 'sqrt',
>>> np.sqrt([4, -1, -3+4J])
array([ 2.+0.j, 0.+1.j, 1.+2.j])
- >>> np.sqrt([4, -1, numpy.inf])
- array([ 2., NaN, Inf])
+ >>> np.sqrt([4, -1, np.inf])
+ array([ 2., nan, inf])
""")
@@ -3660,6 +3661,7 @@ add_newdoc('numpy.core.umath', 'tan',
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
+ >>> out1 = np.array([0], dtype='d')
>>> out2 = np.cos([0.1], out1)
>>> out2 is out1
True
@@ -3668,7 +3670,7 @@ add_newdoc('numpy.core.umath', 'tan',
>>> np.cos(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
- ValueError: invalid return array shape
+ ValueError: operands could not be broadcast together with shapes (3,3) (2,2)
""")
@@ -3711,6 +3713,7 @@ add_newdoc('numpy.core.umath', 'tanh',
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
+ >>> out1 = np.array([0], dtype='d')
>>> out2 = np.tanh([0.1], out1)
>>> out2 is out1
True
@@ -3719,7 +3722,7 @@ add_newdoc('numpy.core.umath', 'tanh',
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
- ValueError: invalid return array shape
+ ValueError: operands could not be broadcast together with shapes (3,3) (2,2)
""")
@@ -3761,8 +3764,6 @@ add_newdoc('numpy.core.umath', 'true_divide',
>>> np.true_divide(x, 4)
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
- >>> x/4
- array([0, 0, 0, 0, 1])
>>> x//4
array([0, 0, 0, 0, 1])
@@ -3858,7 +3859,7 @@ add_newdoc('numpy.core.umath', 'ldexp',
Examples
--------
>>> np.ldexp(5, np.arange(4))
- array([ 5., 10., 20., 40.], dtype=float32)
+ array([ 5., 10., 20., 40.], dtype=float16)
>>> x = np.arange(6)
>>> np.ldexp(*np.frexp(x))
diff --git a/numpy/core/defchararray.py b/numpy/core/defchararray.py
index 12ba3f02e..007fc6186 100644
--- a/numpy/core/defchararray.py
+++ b/numpy/core/defchararray.py
@@ -498,8 +498,7 @@ def count(a, sub, start=0, end=None):
--------
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
- array(['aAaAaA', ' aA ', 'abBABba'],
- dtype='|S7')
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.char.count(c, 'A')
array([3, 1, 1])
>>> np.char.count(c, 'aA')
@@ -552,8 +551,7 @@ def decode(a, encoding=None, errors=None):
--------
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
- array(['aAaAaA', ' aA ', 'abBABba'],
- dtype='|S7')
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.char.encode(c, encoding='cp037')
array(['\\x81\\xc1\\x81\\xc1\\x81\\xc1', '@@\\x81\\xc1@@',
'\\x81\\x82\\xc2\\xc1\\xc2\\x82\\x81'],
@@ -637,8 +635,7 @@ def endswith(a, suffix, start=0, end=None):
>>> s[0] = 'foo'
>>> s[1] = 'bar'
>>> s
- array(['foo', 'bar'],
- dtype='|S3')
+ array(['foo', 'bar'], dtype='<U3')
>>> np.char.endswith(s, 'ar')
array([False, True])
>>> np.char.endswith(s, 'a', start=1, end=2)
@@ -1036,11 +1033,9 @@ def lower(a):
Examples
--------
>>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
- array(['A1B C', '1BCA', 'BCA1'],
- dtype='|S5')
+ array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
>>> np.char.lower(c)
- array(['a1b c', '1bca', 'bca1'],
- dtype='|S5')
+ array(['a1b c', '1bca', 'bca1'], dtype='<U5')
"""
a_arr = numpy.asarray(a)
@@ -1084,23 +1079,20 @@ def lstrip(a, chars=None):
--------
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
- array(['aAaAaA', ' aA ', 'abBABba'],
- dtype='|S7')
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
The 'a' variable is unstripped from c[1] because whitespace leading.
>>> np.char.lstrip(c, 'a')
- array(['AaAaA', ' aA ', 'bBABba'],
- dtype='|S7')
+ array(['AaAaA', ' aA ', 'bBABba'], dtype='<U7')
>>> np.char.lstrip(c, 'A') # leaves c unchanged
- array(['aAaAaA', ' aA ', 'abBABba'],
- dtype='|S7')
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all()
- ... # XXX: is this a regression? this line now returns False
+ ... # XXX: is this a regression? This used to return True
... # np.char.lstrip(c,'') does not modify c at all.
- True
+ False
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all()
True
@@ -1400,10 +1392,10 @@ def rstrip(a, chars=None):
>>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c
array(['aAaAaA', 'abBABba'],
dtype='|S7')
- >>> np.char.rstrip(c, 'a')
+ >>> np.char.rstrip(c, b'a')
array(['aAaAaA', 'abBABb'],
dtype='|S7')
- >>> np.char.rstrip(c, 'A')
+ >>> np.char.rstrip(c, b'A')
array(['aAaAa', 'abBABba'],
dtype='|S7')
@@ -1549,17 +1541,13 @@ def strip(a, chars=None):
--------
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
>>> c
- array(['aAaAaA', ' aA ', 'abBABba'],
- dtype='|S7')
+ array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
>>> np.char.strip(c)
- array(['aAaAaA', 'aA', 'abBABba'],
- dtype='|S7')
+ array(['aAaAaA', 'aA', 'abBABba'], dtype='<U7')
>>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads
- array(['AaAaA', ' aA ', 'bBABb'],
- dtype='|S7')
+ array(['AaAaA', ' aA ', 'bBABb'], dtype='<U7')
>>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails
- array(['aAaAa', ' aA ', 'abBABba'],
- dtype='|S7')
+ array(['aAaAa', ' aA ', 'abBABba'], dtype='<U7')
"""
a_arr = numpy.asarray(a)
@@ -1711,11 +1699,9 @@ def upper(a):
Examples
--------
>>> c = np.array(['a1b c', '1bca', 'bca1']); c
- array(['a1b c', '1bca', 'bca1'],
- dtype='|S5')
+ array(['a1b c', '1bca', 'bca1'], dtype='<U5')
>>> np.char.upper(c)
- array(['A1B C', '1BCA', 'BCA1'],
- dtype='|S5')
+ array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
"""
a_arr = numpy.asarray(a)
@@ -1950,18 +1936,16 @@ class chararray(ndarray):
>>> charar = np.chararray((3, 3))
>>> charar[:] = 'a'
>>> charar
- chararray([['a', 'a', 'a'],
- ['a', 'a', 'a'],
- ['a', 'a', 'a']],
- dtype='|S1')
+ chararray([[b'a', b'a', b'a'],
+ [b'a', b'a', b'a'],
+ [b'a', b'a', b'a']], dtype='|S1')
>>> charar = np.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
- chararray([['abc', 'abc', 'abc'],
- ['abc', 'abc', 'abc'],
- ['abc', 'abc', 'abc']],
- dtype='|S5')
+ chararray([[b'abc', b'abc', b'abc'],
+ [b'abc', b'abc', b'abc'],
+ [b'abc', b'abc', b'abc']], dtype='|S5')
"""
def __new__(subtype, shape, itemsize=1, unicode=False, buffer=None,
diff --git a/numpy/core/einsumfunc.py b/numpy/core/einsumfunc.py
index c4fc77e9e..83b7d8287 100644
--- a/numpy/core/einsumfunc.py
+++ b/numpy/core/einsumfunc.py
@@ -41,10 +41,10 @@ def _flop_count(idx_contraction, inner, num_terms, size_dictionary):
--------
>>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
- 90
+ 30
>>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
- 270
+ 60
"""
@@ -171,7 +171,7 @@ def _optimal_path(input_sets, output_set, idx_dict, memory_limit):
>>> isets = [set('abd'), set('ac'), set('bdc')]
>>> oset = set()
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
- >>> _path__optimal_path(isets, oset, idx_sizes, 5000)
+ >>> _optimal_path(isets, oset, idx_sizes, 5000)
[(0, 2), (0, 1)]
"""
@@ -342,7 +342,7 @@ def _greedy_path(input_sets, output_set, idx_dict, memory_limit):
>>> isets = [set('abd'), set('ac'), set('bdc')]
>>> oset = set()
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
- >>> _path__greedy_path(isets, oset, idx_sizes, 5000)
+ >>> _greedy_path(isets, oset, idx_sizes, 5000)
[(0, 2), (0, 1)]
"""
@@ -539,13 +539,14 @@ def _parse_einsum_input(operands):
--------
The operand list is simplified to reduce printing:
+ >>> np.random.seed(123)
>>> a = np.random.rand(4, 4)
>>> b = np.random.rand(4, 4, 4)
- >>> __parse_einsum_input(('...a,...a->...', a, b))
- ('za,xza', 'xz', [a, b])
+ >>> _parse_einsum_input(('...a,...a->...', a, b))
+ ('za,xza', 'xz', [a, b]) # may vary
- >>> __parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
- ('za,xza', 'xz', [a, b])
+ >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
+ ('za,xza', 'xz', [a, b]) # may vary
"""
if len(operands) == 0:
@@ -763,6 +764,7 @@ def einsum_path(*operands, **kwargs):
of the contraction and the remaining contraction ``(0, 1)`` is then
completed.
+ >>> np.random.seed(123)
>>> a = np.random.rand(2, 2)
>>> b = np.random.rand(2, 5)
>>> c = np.random.rand(5, 2)
@@ -770,7 +772,7 @@ def einsum_path(*operands, **kwargs):
>>> print(path_info[0])
['einsum_path', (1, 2), (0, 1)]
>>> print(path_info[1])
- Complete contraction: ij,jk,kl->il
+ Complete contraction: ij,jk,kl->il # may vary
Naive scaling: 4
Optimized scaling: 3
Naive FLOP count: 1.600e+02
@@ -789,12 +791,12 @@ def einsum_path(*operands, **kwargs):
>>> I = np.random.rand(10, 10, 10, 10)
>>> C = np.random.rand(10, 10)
>>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
- optimize='greedy')
+ ... optimize='greedy')
>>> print(path_info[0])
['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
- >>> print(path_info[1])
- Complete contraction: ea,fb,abcd,gc,hd->efgh
+ >>> print(path_info[1])
+ Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary
Naive scaling: 8
Optimized scaling: 5
Naive FLOP count: 8.000e+08
@@ -1274,32 +1276,32 @@ def einsum(*operands, **kwargs):
>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> np.einsum('ijk,jil->kl', a, b)
- array([[ 4400., 4730.],
- [ 4532., 4874.],
- [ 4664., 5018.],
- [ 4796., 5162.],
- [ 4928., 5306.]])
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
- array([[ 4400., 4730.],
- [ 4532., 4874.],
- [ 4664., 5018.],
- [ 4796., 5162.],
- [ 4928., 5306.]])
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
>>> np.tensordot(a,b, axes=([1,0],[0,1]))
- array([[ 4400., 4730.],
- [ 4532., 4874.],
- [ 4664., 5018.],
- [ 4796., 5162.],
- [ 4928., 5306.]])
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
Writeable returned arrays (since version 1.10.0):
>>> a = np.zeros((3, 3))
>>> np.einsum('ii->i', a)[:] = 1
>>> a
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
Example of ellipsis use:
@@ -1322,19 +1324,27 @@ def einsum(*operands, **kwargs):
particularly significant with larger arrays:
>>> a = np.ones(64).reshape(2,4,8)
- # Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
+
+ Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
+
>>> for iteration in range(500):
- ... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
- # Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
+
+ Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
+
>>> for iteration in range(500):
- ... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
- # Greedy `einsum` (faster optimal path approximation): ~160ms
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
+
+ Greedy `einsum` (faster optimal path approximation): ~160ms
+
>>> for iteration in range(500):
- ... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
- # Optimal `einsum` (best usage pattern in some use cases): ~110ms
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
+
+ Optimal `einsum` (best usage pattern in some use cases): ~110ms
+
>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
>>> for iteration in range(500):
- ... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
"""
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index 59a820d53..240eac6ce 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -240,12 +240,16 @@ def reshape(a, newshape, order='C'):
you should assign the new shape to the shape attribute of the array::
>>> a = np.zeros((10, 2))
+
# A transpose makes the array non-contiguous
>>> b = a.T
+
# Taking a view makes it possible to modify the shape without modifying
# the initial object.
>>> c = b.view()
>>> c.shape = (20)
+ Traceback (most recent call last):
+ ...
AttributeError: incompatible shape for a non-contiguous array
The `order` keyword gives the index ordering both for *fetching* the values
@@ -1644,21 +1648,21 @@ def ravel(a, order='C'):
It is equivalent to ``reshape(-1, order=order)``.
>>> x = np.array([[1, 2, 3], [4, 5, 6]])
- >>> print(np.ravel(x))
- [1 2 3 4 5 6]
+ >>> np.ravel(x)
+ array([1, 2, 3, 4, 5, 6])
- >>> print(x.reshape(-1))
- [1 2 3 4 5 6]
+ >>> x.reshape(-1)
+ array([1, 2, 3, 4, 5, 6])
- >>> print(np.ravel(x, order='F'))
- [1 4 2 5 3 6]
+ >>> np.ravel(x, order='F')
+ array([1, 4, 2, 5, 3, 6])
When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering:
- >>> print(np.ravel(x.T))
- [1 4 2 5 3 6]
- >>> print(np.ravel(x.T, order='A'))
- [1 2 3 4 5 6]
+ >>> np.ravel(x.T)
+ array([1, 4, 2, 5, 3, 6])
+ >>> np.ravel(x.T, order='A')
+ array([1, 2, 3, 4, 5, 6])
When ``order`` is 'K', it will preserve orderings that are neither 'C'
nor 'F', but won't reverse axes:
@@ -1747,7 +1751,7 @@ def nonzero(a):
array([[0, 0],
[1, 1],
[2, 0],
- [2, 1])
+ [2, 1]])
A common use for ``nonzero`` is to find the indices of an array, where
a condition is True. Given an array `a`, the condition `a` > 3 is a
@@ -2150,10 +2154,10 @@ def any(a, axis=None, out=None, keepdims=np._NoValue):
>>> np.any(np.nan)
True
- >>> o=np.array([False])
+ >>> o=np.array(False)
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
- (array([ True]), array([ True]))
+ (array(True), array(True))
>>> # Check now that z is a reference to o
>>> z is o
True
@@ -2236,10 +2240,10 @@ def all(a, axis=None, out=None, keepdims=np._NoValue):
>>> np.all([1.0, np.nan])
True
- >>> o=np.array([False])
+ >>> o=np.array(False)
>>> z=np.all([-1, 4, 5], out=o)
- >>> id(z), id(o), z # doctest: +SKIP
- (28293632, 28293632, array([ True]))
+ >>> id(z), id(o), z
+ (28293632, 28293632, array(True)) # may vary
"""
return _wrapreduction(a, np.logical_and, 'all', axis, None, out, keepdims=keepdims)
@@ -2724,8 +2728,8 @@ def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, initial=np._N
raised on overflow. That means that, on a 32-bit platform:
>>> x = np.array([536870910, 536870910, 536870910, 536870910])
- >>> np.prod(x) # random
- 16
+ >>> np.prod(x)
+ 16 # may vary
The product of an empty array is the neutral element 1:
@@ -2993,11 +2997,11 @@ def around(a, decimals=0, out=None):
Examples
--------
>>> np.around([0.37, 1.64])
- array([ 0., 2.])
+ array([0., 2.])
>>> np.around([0.37, 1.64], decimals=1)
- array([ 0.4, 1.6])
+ array([0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
- array([ 0., 2., 2., 4., 4.])
+ array([0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
array([ 1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1)
@@ -3085,9 +3089,9 @@ def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
- array([ 2., 3.])
+ array([2., 3.])
>>> np.mean(a, axis=1)
- array([ 1.5, 3.5])
+ array([1.5, 3.5])
In single precision, `mean` can be inaccurate:
@@ -3100,7 +3104,7 @@ def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
Computing the mean in float64 is more accurate:
>>> np.mean(a, dtype=np.float64)
- 0.55000000074505806
+ 0.55000000074505806 # may vary
"""
kwargs = {}
@@ -3206,11 +3210,11 @@ def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
- 1.1180339887498949
+ 1.1180339887498949 # may vary
>>> np.std(a, axis=0)
- array([ 1., 1.])
+ array([1., 1.])
>>> np.std(a, axis=1)
- array([ 0.5, 0.5])
+ array([0.5, 0.5])
In single precision, std() can be inaccurate:
@@ -3223,7 +3227,7 @@ def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
Computing the standard deviation in float64 is more accurate:
>>> np.std(a, dtype=np.float64)
- 0.44999999925494177
+ 0.44999999925494177 # may vary
"""
kwargs = {}
@@ -3330,9 +3334,9 @@ def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
- array([ 1., 1.])
+ array([1., 1.])
>>> np.var(a, axis=1)
- array([ 0.25, 0.25])
+ array([0.25, 0.25])
In single precision, var() can be inaccurate:
@@ -3345,7 +3349,7 @@ def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
Computing the variance in float64 is more accurate:
>>> np.var(a, dtype=np.float64)
- 0.20249999932944759
+ 0.20249999932944759 # may vary
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025
diff --git a/numpy/core/function_base.py b/numpy/core/function_base.py
index b68fd4068..762328173 100644
--- a/numpy/core/function_base.py
+++ b/numpy/core/function_base.py
@@ -102,14 +102,17 @@ def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
Examples
--------
>>> np.linspace(2.0, 3.0, num=5)
- array([ 2. , 2.25, 2.5 , 2.75, 3. ])
+ array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
- array([ 2. , 2.2, 2.4, 2.6, 2.8])
+ array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
- (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
+ (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
Graphical illustration:
+ >>> import matplotlib
+ >>> import matplotlib.pyplot
+ >>> matplotlib.pyplot.switch_backend('agg')
>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
@@ -252,14 +255,17 @@ def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None,
Examples
--------
>>> np.logspace(2.0, 3.0, num=4)
- array([ 100. , 215.443469 , 464.15888336, 1000. ])
+ array([ 100. , 215.443469 , 464.15888336, 1000. ])
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
- array([ 100. , 177.827941 , 316.22776602, 562.34132519])
+ array([100. , 177.827941 , 316.22776602, 562.34132519])
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
- array([ 4. , 5.0396842 , 6.34960421, 8. ])
+ array([4. , 5.0396842 , 6.34960421, 8. ])
Graphical illustration:
+ >>> import matplotlib
+ >>> import matplotlib.pyplot
+ >>> matplotlib.pyplot.switch_backend('agg')
>>> import matplotlib.pyplot as plt
>>> N = 10
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
@@ -361,24 +367,29 @@ def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0):
Negative, decreasing, and complex inputs are allowed:
>>> np.geomspace(1000, 1, num=4)
- array([ 1000., 100., 10., 1.])
+ array([1000., 100., 10., 1.])
>>> np.geomspace(-1000, -1, num=4)
array([-1000., -100., -10., -1.])
>>> np.geomspace(1j, 1000j, num=4) # Straight line
- array([ 0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
+ array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j])
>>> np.geomspace(-1+0j, 1+0j, num=5) # Circle
- array([-1.00000000+0.j , -0.70710678+0.70710678j,
- 0.00000000+1.j , 0.70710678+0.70710678j,
- 1.00000000+0.j ])
+ array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
+ 6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j,
+ 1.00000000e+00+0.00000000e+00j])
Graphical illustration of ``endpoint`` parameter:
+ >>> import matplotlib
+ >>> matplotlib.use('agg')
>>> import matplotlib.pyplot as plt
>>> N = 10
>>> y = np.zeros(N)
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
+ [<matplotlib.lines.Line2D object at 0x...>]
>>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
+ [<matplotlib.lines.Line2D object at 0x...>]
>>> plt.axis([0.5, 2000, 0, 3])
+ [0.5, 2000, 0, 3]
>>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
>>> plt.show()
diff --git a/numpy/core/memmap.py b/numpy/core/memmap.py
index 82bc4707c..9ba4817f4 100644
--- a/numpy/core/memmap.py
+++ b/numpy/core/memmap.py
@@ -135,9 +135,9 @@ class memmap(ndarray):
>>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4))
>>> fp
- memmap([[ 0., 0., 0., 0.],
- [ 0., 0., 0., 0.],
- [ 0., 0., 0., 0.]], dtype=float32)
+ memmap([[0., 0., 0., 0.],
+ [0., 0., 0., 0.],
+ [0., 0., 0., 0.]], dtype=float32)
Write data to memmap array:
diff --git a/numpy/core/multiarray.py b/numpy/core/multiarray.py
index df0ed2df4..1b9c65782 100644
--- a/numpy/core/multiarray.py
+++ b/numpy/core/multiarray.py
@@ -117,11 +117,11 @@ def empty_like(prototype, dtype=None, order=None, subok=None):
--------
>>> a = ([1,2,3], [4,5,6]) # a is array-like
>>> np.empty_like(a)
- array([[-1073741821, -1073741821, 3], #random
+ array([[-1073741821, -1073741821, 3], # random
[ 0, 0, -1073741821]])
>>> a = np.array([[1., 2., 3.],[4.,5.,6.]])
>>> np.empty_like(a)
- array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random
+ array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # random
[ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]])
"""
@@ -286,8 +286,8 @@ def inner(a, b):
An example where `b` is a scalar:
>>> np.inner(np.eye(2), 7)
- array([[ 7., 0.],
- [ 0., 7.]])
+ array([[7., 0.],
+ [0., 7.]])
"""
return (a, b)
@@ -421,8 +421,8 @@ def lexsort(keys, axis=None):
>>> a = [1,5,1,4,3,4,4] # First column
>>> b = [9,4,0,4,0,2,1] # Second column
>>> ind = np.lexsort((b,a)) # Sort by a, then by b
- >>> print(ind)
- [2 0 4 6 5 3 1]
+ >>> ind
+ array([2, 0, 4, 6, 5, 3, 1])
>>> [(a[i],b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]
@@ -1139,7 +1139,10 @@ def packbits(myarray, axis=None):
... [0,0,1]]])
>>> b = np.packbits(a, axis=-1)
>>> b
- array([[[160],[64]],[[192],[32]]], dtype=uint8)
+ array([[[160],
+ [ 64]],
+ [[192],
+ [ 32]]], dtype=uint8)
Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000,
and 32 = 0010 0000.
@@ -1329,7 +1332,7 @@ def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None):
>>> # The weekdays are Friday, Saturday, and Monday
... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'],
... holidays=['2011-07-01', '2011-07-04', '2011-07-17'])
- array([False, False, True], dtype='bool')
+ array([False, False, True])
"""
return (dates, weekmask, holidays, out)
@@ -1403,27 +1406,27 @@ def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None,
--------
>>> # First business day in October 2011 (not accounting for holidays)
... np.busday_offset('2011-10', 0, roll='forward')
- numpy.datetime64('2011-10-03','D')
+ numpy.datetime64('2011-10-03')
>>> # Last business day in February 2012 (not accounting for holidays)
... np.busday_offset('2012-03', -1, roll='forward')
- numpy.datetime64('2012-02-29','D')
+ numpy.datetime64('2012-02-29')
>>> # Third Wednesday in January 2011
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
- numpy.datetime64('2011-01-19','D')
+ numpy.datetime64('2011-01-19')
>>> # 2012 Mother's Day in Canada and the U.S.
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
- numpy.datetime64('2012-05-13','D')
+ numpy.datetime64('2012-05-13')
>>> # First business day on or after a date
... np.busday_offset('2011-03-20', 0, roll='forward')
- numpy.datetime64('2011-03-21','D')
+ numpy.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
- numpy.datetime64('2011-03-22','D')
+ numpy.datetime64('2011-03-22')
>>> # First business day after a date
... np.busday_offset('2011-03-20', 1, roll='backward')
- numpy.datetime64('2011-03-21','D')
+ numpy.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
- numpy.datetime64('2011-03-23','D')
+ numpy.datetime64('2011-03-23')
"""
return (dates, offsets, weekmask, holidays, out)
@@ -1487,7 +1490,7 @@ def busday_count(begindates, enddates, weekmask=None, holidays=None,
... np.busday_count('2011-01', '2011-02')
21
>>> # Number of weekdays in 2011
- ... np.busday_count('2011', '2012')
+ >>> np.busday_count('2011', '2012')
260
>>> # Number of Saturdays in 2011
... np.busday_count('2011', '2012', weekmask='Sat')
@@ -1525,6 +1528,7 @@ def datetime_as_string(arr, unit=None, timezone=None, casting=None):
Examples
--------
+ >>> import pytz
>>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]')
>>> d
array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30',
@@ -1555,6 +1559,8 @@ def datetime_as_string(arr, unit=None, timezone=None, casting=None):
'casting' can be used to specify whether precision can be changed
>>> np.datetime_as_string(d, unit='h', casting='safe')
+ Traceback (most recent call last):
+ ...
TypeError: Cannot create a datetime string as units 'h' from a NumPy
datetime with units 'm' according to the rule 'safe'
"""
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 8768cbe56..8a8efddf3 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -160,9 +160,9 @@ def zeros_like(a, dtype=None, order='K', subok=True):
>>> y = np.arange(3, dtype=float)
>>> y
- array([ 0., 1., 2.])
+ array([0., 1., 2.])
>>> np.zeros_like(y)
- array([ 0., 0., 0.])
+ array([0., 0., 0.])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
@@ -205,19 +205,19 @@ def ones(shape, dtype=None, order='C'):
Examples
--------
>>> np.ones(5)
- array([ 1., 1., 1., 1., 1.])
+ array([1., 1., 1., 1., 1.])
>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1])
>>> np.ones((2, 1))
- array([[ 1.],
- [ 1.]])
+ array([[1.],
+ [1.]])
>>> s = (2,2)
>>> np.ones(s)
- array([[ 1., 1.],
- [ 1., 1.]])
+ array([[1., 1.],
+ [1., 1.]])
"""
a = empty(shape, dtype, order)
@@ -280,9 +280,9 @@ def ones_like(a, dtype=None, order='K', subok=True):
>>> y = np.arange(3, dtype=float)
>>> y
- array([ 0., 1., 2.])
+ array([0., 1., 2.])
>>> np.ones_like(y)
- array([ 1., 1., 1.])
+ array([1., 1., 1.])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
@@ -323,8 +323,8 @@ def full(shape, fill_value, dtype=None, order='C'):
Examples
--------
>>> np.full((2, 2), np.inf)
- array([[ inf, inf],
- [ inf, inf]])
+ array([[inf, inf],
+ [inf, inf]])
>>> np.full((2, 2), 10)
array([[10, 10],
[10, 10]])
@@ -385,13 +385,13 @@ def full_like(a, fill_value, dtype=None, order='K', subok=True):
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
>>> np.full_like(x, 0.1, dtype=np.double)
- array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
+ array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
>>> np.full_like(x, np.nan, dtype=np.double)
- array([ nan, nan, nan, nan, nan, nan])
+ array([nan, nan, nan, nan, nan, nan])
>>> y = np.arange(6, dtype=np.double)
>>> np.full_like(y, 0.1)
- array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
+ array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
@@ -620,8 +620,8 @@ def ascontiguousarray(a, dtype=None):
--------
>>> x = np.arange(6).reshape(2,3)
>>> np.ascontiguousarray(x, dtype=np.float32)
- array([[ 0., 1., 2.],
- [ 3., 4., 5.]], dtype=float32)
+ array([[0., 1., 2.],
+ [3., 4., 5.]], dtype=float32)
>>> x.flags['C_CONTIGUOUS']
True
@@ -802,7 +802,7 @@ def isfortran(a):
>>> np.isfortran(a)
False
- >>> b = np.array([[1, 2, 3], [4, 5, 6]], order='FORTRAN')
+ >>> b = np.array([[1, 2, 3], [4, 5, 6]], order='F')
>>> b
array([[1, 2, 3],
[4, 5, 6]])
@@ -987,11 +987,11 @@ def correlate(a, v, mode='valid'):
Examples
--------
>>> np.correlate([1, 2, 3], [0, 1, 0.5])
- array([ 3.5])
+ array([3.5])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "same")
- array([ 2. , 3.5, 3. ])
+ array([2. , 3.5, 3. ])
>>> np.correlate([1, 2, 3], [0, 1, 0.5], "full")
- array([ 0.5, 2. , 3.5, 3. , 0. ])
+ array([0.5, 2. , 3.5, 3. , 0. ])
Using complex sequences:
@@ -1087,20 +1087,20 @@ def convolve(a, v, mode='full'):
before "sliding" the two across one another:
>>> np.convolve([1, 2, 3], [0, 1, 0.5])
- array([ 0. , 1. , 2.5, 4. , 1.5])
+ array([0. , 1. , 2.5, 4. , 1.5])
Only return the middle values of the convolution.
Contains boundary effects, where zeros are taken
into account:
>>> np.convolve([1,2,3],[0,1,0.5], 'same')
- array([ 1. , 2.5, 4. ])
+ array([1. , 2.5, 4. ])
The two arrays are of the same length, so there
is only one position where they completely overlap:
>>> np.convolve([1,2,3],[0,1,0.5], 'valid')
- array([ 2.5])
+ array([2.5])
"""
a, v = array(a, copy=False, ndmin=1), array(v, copy=False, ndmin=1)
@@ -1176,11 +1176,11 @@ def outer(a, b, out=None):
[-2., -1., 0., 1., 2.]])
>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
- array([[ 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
- [ 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
- [ 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
+ array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],
+ [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
+ [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
+ [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
+ [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])
>>> grid = rl + im
>>> grid
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],
@@ -1193,9 +1193,9 @@ def outer(a, b, out=None):
>>> x = np.array(['a', 'b', 'c'], dtype=object)
>>> np.outer(x, [1, 2, 3])
- array([[a, aa, aaa],
- [b, bb, bbb],
- [c, cc, ccc]], dtype=object)
+ array([['a', 'aa', 'aaa'],
+ ['b', 'bb', 'bbb'],
+ ['c', 'cc', 'ccc']], dtype=object)
"""
a = asarray(a)
@@ -1264,11 +1264,11 @@ def tensordot(a, b, axes=2):
>>> c.shape
(5, 2)
>>> c
- array([[ 4400., 4730.],
- [ 4532., 4874.],
- [ 4664., 5018.],
- [ 4796., 5162.],
- [ 4928., 5306.]])
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
>>> # A slower but equivalent way of computing the same...
>>> d = np.zeros((5,2))
>>> for i in range(5):
@@ -1294,40 +1294,40 @@ def tensordot(a, b, axes=2):
[3, 4]],
[[5, 6],
[7, 8]]])
- array([[a, b],
- [c, d]], dtype=object)
+ array([['a', 'b'],
+ ['c', 'd']], dtype=object)
>>> np.tensordot(a, A) # third argument default is 2 for double-contraction
- array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object)
+ array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object)
>>> np.tensordot(a, A, 1)
- array([[[acc, bdd],
- [aaacccc, bbbdddd]],
- [[aaaaacccccc, bbbbbdddddd],
- [aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object)
+ array([[['acc', 'bdd'],
+ ['aaacccc', 'bbbdddd']],
+ [['aaaaacccccc', 'bbbbbdddddd'],
+ ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object)
>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.)
- array([[[[[a, b],
- [c, d]],
+ array([[[[['a', 'b'],
+ ['c', 'd']],
...
>>> np.tensordot(a, A, (0, 1))
- array([[[abbbbb, cddddd],
- [aabbbbbb, ccdddddd]],
- [[aaabbbbbbb, cccddddddd],
- [aaaabbbbbbbb, ccccdddddddd]]], dtype=object)
+ array([[['abbbbb', 'cddddd'],
+ ['aabbbbbb', 'ccdddddd']],
+ [['aaabbbbbbb', 'cccddddddd'],
+ ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object)
>>> np.tensordot(a, A, (2, 1))
- array([[[abb, cdd],
- [aaabbbb, cccdddd]],
- [[aaaaabbbbbb, cccccdddddd],
- [aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object)
+ array([[['abb', 'cdd'],
+ ['aaabbbb', 'cccdddd']],
+ [['aaaaabbbbbb', 'cccccdddddd'],
+ ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object)
>>> np.tensordot(a, A, ((0, 1), (0, 1)))
- array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object)
+ array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object)
>>> np.tensordot(a, A, ((2, 1), (1, 0)))
- array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object)
+ array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object)
"""
try:
@@ -1780,7 +1780,7 @@ def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None):
>>> x = [1,2]
>>> y = [4,5]
>>> np.cross(x, y)
- -3
+ array(-3)
Multiple vector cross-products. Note that the direction of the cross
product vector is defined by the `right-hand rule`.
@@ -2097,10 +2097,10 @@ def isscalar(num):
NumPy supports PEP 3141 numbers:
>>> from fractions import Fraction
- >>> isscalar(Fraction(5, 17))
+ >>> np.isscalar(Fraction(5, 17))
True
>>> from numbers import Number
- >>> isscalar(Number())
+ >>> np.isscalar(Number())
True
"""
@@ -2339,9 +2339,9 @@ def identity(n, dtype=None):
Examples
--------
>>> np.identity(3)
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
"""
from numpy import eye
@@ -2487,23 +2487,23 @@ def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False):
Examples
--------
>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8])
- array([True, False])
+ array([ True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9])
- array([True, True])
+ array([ True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9])
- array([False, True])
+ array([False, True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan])
- array([True, False])
+ array([ True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)
- array([True, True])
+ array([ True, True])
>>> np.isclose([1e-8, 1e-7], [0.0, 0.0])
- array([ True, False], dtype=bool)
+ array([ True, False])
>>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0)
- array([False, False], dtype=bool)
+ array([False, False])
>>> np.isclose([1e-10, 1e-10], [1e-20, 0.0])
- array([ True, True], dtype=bool)
+ array([ True, True])
>>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0)
- array([False, True], dtype=bool)
+ array([False, True])
"""
def within_tol(x, y, atol, rtol):
with errstate(invalid='ignore'):
@@ -2710,11 +2710,9 @@ def seterr(all=None, divide=None, over=None, under=None, invalid=None):
--------
>>> old_settings = np.seterr(all='ignore') #seterr to known value
>>> np.seterr(over='raise')
- {'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
- 'under': 'ignore'}
+ {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
>>> np.seterr(**old_settings) # reset to default
- {'over': 'raise', 'divide': 'ignore', 'invalid': 'ignore',
- 'under': 'ignore'}
+ {'divide': 'ignore', 'over': 'raise', 'under': 'ignore', 'invalid': 'ignore'}
>>> np.int16(32000) * np.int16(3)
30464
@@ -2724,11 +2722,11 @@ def seterr(all=None, divide=None, over=None, under=None, invalid=None):
File "<stdin>", line 1, in <module>
FloatingPointError: overflow encountered in short_scalars
+ >>> from collections import OrderedDict
>>> old_settings = np.seterr(all='print')
- >>> np.geterr()
- {'over': 'print', 'divide': 'print', 'invalid': 'print', 'under': 'print'}
+ >>> OrderedDict(np.geterr())
+ OrderedDict([('divide', 'print'), ('over', 'print'), ('under', 'print'), ('invalid', 'print')])
>>> np.int16(32000) * np.int16(3)
- Warning: overflow encountered in short_scalars
30464
"""
@@ -2779,18 +2777,17 @@ def geterr():
Examples
--------
- >>> np.geterr()
- {'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
- 'under': 'ignore'}
+ >>> from collections import OrderedDict
+ >>> sorted(np.geterr().items())
+ [('divide', 'warn'), ('invalid', 'warn'), ('over', 'warn'), ('under', 'ignore')]
>>> np.arange(3.) / np.arange(3.)
- array([ NaN, 1., 1.])
+ array([nan, 1., 1.])
>>> oldsettings = np.seterr(all='warn', over='raise')
- >>> np.geterr()
- {'over': 'raise', 'divide': 'warn', 'invalid': 'warn', 'under': 'warn'}
+ >>> OrderedDict(sorted(np.geterr().items()))
+ OrderedDict([('divide', 'warn'), ('invalid', 'warn'), ('over', 'raise'), ('under', 'warn')])
>>> np.arange(3.) / np.arange(3.)
- __main__:1: RuntimeWarning: invalid value encountered in divide
- array([ NaN, 1., 1.])
+ array([nan, 1., 1.])
"""
maskvalue = umath.geterrobj()[1]
@@ -2897,15 +2894,16 @@ def seterrcall(func):
>>> saved_handler = np.seterrcall(err_handler)
>>> save_err = np.seterr(all='call')
+ >>> from collections import OrderedDict
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
- array([ Inf, Inf, Inf])
+ array([inf, inf, inf])
>>> np.seterrcall(saved_handler)
<function err_handler at 0x...>
- >>> np.seterr(**save_err)
- {'over': 'call', 'divide': 'call', 'invalid': 'call', 'under': 'call'}
+ >>> OrderedDict(sorted(np.seterr(**save_err).items()))
+ OrderedDict([('divide', 'call'), ('invalid', 'call'), ('over', 'call'), ('under', 'call')])
Log error message:
@@ -2919,14 +2917,13 @@ def seterrcall(func):
>>> save_err = np.seterr(all='log')
>>> np.array([1, 2, 3]) / 0.0
- LOG: Warning: divide by zero encountered in divide
- <BLANKLINE>
- array([ Inf, Inf, Inf])
+ LOG: Warning: divide by zero encountered in true_divide
+ array([inf, inf, inf])
>>> np.seterrcall(saved_handler)
- <__main__.Log object at 0x...>
- >>> np.seterr(**save_err)
- {'over': 'log', 'divide': 'log', 'invalid': 'log', 'under': 'log'}
+ <numpy.core.numeric.Log object at 0x...>
+ >>> OrderedDict(sorted(np.seterr(**save_err).items()))
+ OrderedDict([('divide', 'log'), ('invalid', 'log'), ('over', 'log'), ('under', 'log')])
"""
if func is not None and not isinstance(func, collections_abc.Callable):
@@ -2975,7 +2972,7 @@ def geterrcall():
>>> oldhandler = np.seterrcall(err_handler)
>>> np.array([1, 2, 3]) / 0.0
Floating point error (divide by zero), with flag 1
- array([ Inf, Inf, Inf])
+ array([inf, inf, inf])
>>> cur_handler = np.geterrcall()
>>> cur_handler is err_handler
@@ -3023,15 +3020,14 @@ class errstate(object):
Examples
--------
+ >>> from collections import OrderedDict
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.
>>> np.arange(3) / 0.
- array([ NaN, Inf, Inf])
+ array([nan, inf, inf])
>>> with np.errstate(divide='warn'):
... np.arange(3) / 0.
- ...
- __main__:2: RuntimeWarning: divide by zero encountered in divide
- array([ NaN, Inf, Inf])
+ array([nan, inf, inf])
>>> np.sqrt(-1)
nan
@@ -3043,9 +3039,8 @@ class errstate(object):
Outside the context the error handling behavior has not changed:
- >>> np.geterr()
- {'over': 'warn', 'divide': 'warn', 'invalid': 'warn',
- 'under': 'ignore'}
+ >>> OrderedDict(sorted(np.geterr().items()))
+ OrderedDict([('divide', 'ignore'), ('invalid', 'ignore'), ('over', 'ignore'), ('under', 'ignore')])
"""
# Note that we don't want to run the above doctests because they will fail
diff --git a/numpy/core/numerictypes.py b/numpy/core/numerictypes.py
index f00f92286..5bc37b73a 100644
--- a/numpy/core/numerictypes.py
+++ b/numpy/core/numerictypes.py
@@ -163,19 +163,19 @@ def maximum_sctype(t):
Examples
--------
>>> np.maximum_sctype(int)
- <type 'numpy.int64'>
+ <class 'numpy.int64'>
>>> np.maximum_sctype(np.uint8)
- <type 'numpy.uint64'>
+ <class 'numpy.uint64'>
>>> np.maximum_sctype(complex)
- <type 'numpy.complex192'>
+ <class 'numpy.complex256'> # may vary
>>> np.maximum_sctype(str)
- <type 'numpy.string_'>
+ <class 'numpy.str_'>
>>> np.maximum_sctype('i2')
- <type 'numpy.int64'>
+ <class 'numpy.int64'>
>>> np.maximum_sctype('f4')
- <type 'numpy.float96'>
+ <class 'numpy.float128'> # may vary
"""
g = obj2sctype(t)
@@ -260,19 +260,18 @@ def obj2sctype(rep, default=None):
Examples
--------
>>> np.obj2sctype(np.int32)
- <type 'numpy.int32'>
+ <class 'numpy.int32'>
>>> np.obj2sctype(np.array([1., 2.]))
- <type 'numpy.float64'>
+ <class 'numpy.float64'>
>>> np.obj2sctype(np.array([1.j]))
- <type 'numpy.complex128'>
+ <class 'numpy.complex128'>
>>> np.obj2sctype(dict)
- <type 'numpy.object_'>
+ <class 'numpy.object_'>
>>> np.obj2sctype('string')
- <type 'numpy.string_'>
>>> np.obj2sctype(1, default=list)
- <type 'list'>
+ <class 'list'>
"""
# prevent abtract classes being upcast
@@ -319,7 +318,7 @@ def issubclass_(arg1, arg2):
Examples
--------
>>> np.issubclass_(np.int32, int)
- True
+ False # True on Python 2.7
>>> np.issubclass_(np.int32, float)
False
@@ -352,7 +351,7 @@ def issubsctype(arg1, arg2):
Examples
--------
>>> np.issubsctype('S8', str)
- True
+ False
>>> np.issubsctype(np.array([1]), int)
True
>>> np.issubsctype(np.array([1]), float)
@@ -485,9 +484,9 @@ def sctype2char(sctype):
Examples
--------
- >>> for sctype in [np.int32, float, complex, np.string_, np.ndarray]:
+ >>> for sctype in [np.int32, np.double, np.complex, np.string_, np.ndarray]:
... print(np.sctype2char(sctype))
- l
+ l # may vary
d
D
S
diff --git a/numpy/core/records.py b/numpy/core/records.py
index 86a43306a..ff2a3ef9f 100644
--- a/numpy/core/records.py
+++ b/numpy/core/records.py
@@ -7,10 +7,9 @@ Most commonly, ndarrays contain elements of a single type, e.g. floats,
integers, bools etc. However, it is possible for elements to be combinations
of these using structured types, such as::
- >>> a = np.array([(1, 2.0), (1, 2.0)], dtype=[('x', int), ('y', float)])
+ >>> a = np.array([(1, 2.0), (1, 2.0)], dtype=[('x', np.int64), ('y', np.float64)])
>>> a
- array([(1, 2.0), (1, 2.0)],
- dtype=[('x', '<i4'), ('y', '<f8')])
+ array([(1, 2.), (1, 2.)], dtype=[('x', '<i8'), ('y', '<f8')])
Here, each element consists of two fields: x (and int), and y (a float).
This is known as a structured array. The different fields are analogous
@@ -21,7 +20,7 @@ one would a dictionary::
array([1, 1])
>>> a['y']
- array([ 2., 2.])
+ array([2., 2.])
Record arrays allow us to access fields as properties::
@@ -31,7 +30,7 @@ Record arrays allow us to access fields as properties::
array([1, 1])
>>> ar.y
- array([ 2., 2.])
+ array([2., 2.])
"""
from __future__ import division, absolute_import, print_function
@@ -128,10 +127,9 @@ class format_parser(object):
Examples
--------
- >>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
+ >>> np.format_parser(['<f8', '<i4', '<a5'], ['col1', 'col2', 'col3'],
... ['T1', 'T2', 'T3']).dtype
- dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4'),
- (('T3', 'col3'), '|S5')])
+ dtype([(('T1', 'col1'), '<f8'), (('T2', 'col2'), '<i4'), (('T3', 'col3'), 'S5')])
`names` and/or `titles` can be empty lists. If `titles` is an empty list,
titles will simply not appear. If `names` is empty, default field names
@@ -139,9 +137,9 @@ class format_parser(object):
>>> np.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'],
... []).dtype
- dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '|S5')])
- >>> np.format_parser(['f8', 'i4', 'a5'], [], []).dtype
- dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', '|S5')])
+ dtype([('col1', '<f8'), ('col2', '<i4'), ('col3', '<S5')])
+ >>> np.format_parser(['<f8', '<i4', '<a5'], [], []).dtype
+ dtype([('f0', '<f8'), ('f1', '<i4'), ('f2', 'S5')])
"""
@@ -380,20 +378,19 @@ class recarray(ndarray):
--------
Create an array with two fields, ``x`` and ``y``:
- >>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
+ >>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', '<f8'), ('y', '<i8')])
>>> x
- array([(1.0, 2), (3.0, 4)],
- dtype=[('x', '<f8'), ('y', '<i4')])
+ array([(1., 2), (3., 4)], dtype=[('x', '<f8'), ('y', '<i8')])
>>> x['x']
- array([ 1., 3.])
+ array([1., 3.])
View the array as a record array:
>>> x = x.view(np.recarray)
>>> x.x
- array([ 1., 3.])
+ array([1., 3.])
>>> x.y
array([2, 4])
@@ -580,7 +577,7 @@ def fromarrays(arrayList, dtype=None, shape=None, formats=None,
>>> x3=np.array([1.1,2,3,4])
>>> r = np.core.records.fromarrays([x1,x2,x3],names='a,b,c')
>>> print(r[1])
- (2, 'dd', 2.0)
+ (2, 'dd', 2.0) # may vary
>>> x1[1]=34
>>> r.a
array([1, 2, 3, 4])
@@ -659,11 +656,11 @@ def fromrecords(recList, dtype=None, shape=None, formats=None, names=None,
>>> r.col1
array([456, 2])
>>> r.col2
- array(['dbe', 'de'],
- dtype='|S3')
+ array(['dbe', 'de'], dtype='<U3')
>>> import pickle
- >>> print(pickle.loads(pickle.dumps(r)))
- [(456, 'dbe', 1.2) (2, 'de', 1.3)]
+ >>> pickle.loads(pickle.dumps(r))
+ rec.array([(456, 'dbe', 1.2), ( 2, 'de', 1.3)],
+ dtype=[('col1', '<i8'), ('col2', '<U3'), ('col3', '<f8')])
"""
if formats is None and dtype is None: # slower
@@ -750,7 +747,7 @@ def fromfile(fd, dtype=None, shape=None, offset=0, formats=None,
>>> a = a.newbyteorder('<')
>>> a.tofile(fd)
>>>
- >>> fd.seek(0)
+ >>> _ = fd.seek(0)
>>> r=np.core.records.fromfile(fd, formats='f8,i4,a5', shape=10,
... byteorder='<')
>>> print(r[5])
diff --git a/numpy/core/shape_base.py b/numpy/core/shape_base.py
index a529d2ad7..0378d3c1f 100644
--- a/numpy/core/shape_base.py
+++ b/numpy/core/shape_base.py
@@ -48,13 +48,13 @@ def atleast_1d(*arys):
Examples
--------
>>> np.atleast_1d(1.0)
- array([ 1.])
+ array([1.])
>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
- array([[ 0., 1., 2.],
- [ 3., 4., 5.],
- [ 6., 7., 8.]])
+ array([[0., 1., 2.],
+ [3., 4., 5.],
+ [6., 7., 8.]])
>>> np.atleast_1d(x) is x
True
@@ -106,11 +106,11 @@ def atleast_2d(*arys):
Examples
--------
>>> np.atleast_2d(3.0)
- array([[ 3.]])
+ array([[3.]])
>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
- array([[ 0., 1., 2.]])
+ array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True
@@ -166,7 +166,7 @@ def atleast_3d(*arys):
Examples
--------
>>> np.atleast_3d(3.0)
- array([[[ 3.]]])
+ array([[[3.]]])
>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
@@ -179,7 +179,7 @@ def atleast_3d(*arys):
True
>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
- ... print(arr, arr.shape)
+ ... print(arr, arr.shape) # doctest: +SKIP
...
[[[1]
[2]]] (1, 2, 1)
@@ -760,11 +760,11 @@ def block(arrays):
... [A, np.zeros((2, 3))],
... [np.ones((3, 2)), B ]
... ])
- array([[ 2., 0., 0., 0., 0.],
- [ 0., 2., 0., 0., 0.],
- [ 1., 1., 3., 0., 0.],
- [ 1., 1., 0., 3., 0.],
- [ 1., 1., 0., 0., 3.]])
+ array([[2., 0., 0., 0., 0.],
+ [0., 2., 0., 0., 0.],
+ [1., 1., 3., 0., 0.],
+ [1., 1., 0., 3., 0.],
+ [1., 1., 0., 0., 3.]])
With a list of depth 1, `block` can be used as `hstack`
@@ -774,7 +774,7 @@ def block(arrays):
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.block([a, b, 10]) # hstack([a, b, 10])
- array([1, 2, 3, 2, 3, 4, 10])
+ array([ 1, 2, 3, 2, 3, 4, 10])
>>> A = np.ones((2, 2), int)
>>> B = 2 * A
diff --git a/numpy/core/src/common/ufunc_override.c b/numpy/core/src/common/ufunc_override.c
index b67422132..89f08a9cb 100644
--- a/numpy/core/src/common/ufunc_override.c
+++ b/numpy/core/src/common/ufunc_override.c
@@ -71,7 +71,7 @@ PyUFunc_HasOverride(PyObject * obj)
* Get possible out argument from kwds, and returns the number of outputs
* contained within it: if a tuple, the number of elements in it, 1 otherwise.
* The out argument itself is returned in out_kwd_obj, and the outputs
- * in the out_obj array (all as borrowed references).
+ * in the out_obj array (as borrowed references).
*
* Returns 0 if no outputs found, -1 if kwds is not a dict (with an error set).
*/
@@ -79,24 +79,42 @@ NPY_NO_EXPORT int
PyUFuncOverride_GetOutObjects(PyObject *kwds, PyObject **out_kwd_obj, PyObject ***out_objs)
{
if (kwds == NULL) {
+ Py_INCREF(Py_None);
+ *out_kwd_obj = Py_None;
return 0;
}
if (!PyDict_CheckExact(kwds)) {
PyErr_SetString(PyExc_TypeError,
"Internal Numpy error: call to PyUFuncOverride_GetOutObjects "
"with non-dict kwds");
+ *out_kwd_obj = NULL;
return -1;
}
/* borrowed reference */
*out_kwd_obj = PyDict_GetItemString(kwds, "out");
if (*out_kwd_obj == NULL) {
+ Py_INCREF(Py_None);
+ *out_kwd_obj = Py_None;
return 0;
}
if (PyTuple_CheckExact(*out_kwd_obj)) {
- *out_objs = PySequence_Fast_ITEMS(*out_kwd_obj);
- return PySequence_Fast_GET_SIZE(*out_kwd_obj);
+ /*
+ * The C-API recommends calling PySequence_Fast before any of the other
+ * PySequence_Fast* functions. This is required for PyPy
+ */
+ PyObject *seq;
+ seq = PySequence_Fast(*out_kwd_obj,
+ "Could not convert object to sequence");
+ if (seq == NULL) {
+ *out_kwd_obj = NULL;
+ return -1;
+ }
+ *out_objs = PySequence_Fast_ITEMS(seq);
+ *out_kwd_obj = seq;
+ return PySequence_Fast_GET_SIZE(seq);
}
else {
+ Py_INCREF(*out_kwd_obj);
*out_objs = out_kwd_obj;
return 1;
}
diff --git a/numpy/core/src/common/ufunc_override.h b/numpy/core/src/common/ufunc_override.h
index cc39166b3..bf86865c9 100644
--- a/numpy/core/src/common/ufunc_override.h
+++ b/numpy/core/src/common/ufunc_override.h
@@ -28,7 +28,7 @@ PyUFunc_HasOverride(PyObject *obj);
* Get possible out argument from kwds, and returns the number of outputs
* contained within it: if a tuple, the number of elements in it, 1 otherwise.
* The out argument itself is returned in out_kwd_obj, and the outputs
- * in the out_obj array (all as borrowed references).
+ * in the out_obj array (as borrowed references).
*
* Returns 0 if no outputs found, -1 if kwds is not a dict (with an error set).
*/
diff --git a/numpy/core/src/multiarray/common.c b/numpy/core/src/multiarray/common.c
index 3e5221a59..2e51cee7e 100644
--- a/numpy/core/src/multiarray/common.c
+++ b/numpy/core/src/multiarray/common.c
@@ -440,12 +440,18 @@ PyArray_DTypeFromObjectHelper(PyObject *obj, int maxdims,
return 0;
}
- /* Recursive case, first check the sequence contains only one type */
+ /*
+ * The C-API recommends calling PySequence_Fast before any of the other
+ * PySequence_Fast* functions. This is required for PyPy
+ */
seq = PySequence_Fast(obj, "Could not convert object to sequence");
if (seq == NULL) {
goto fail;
}
+
+ /* Recursive case, first check the sequence contains only one type */
size = PySequence_Fast_GET_SIZE(seq);
+ /* objects is borrowed, do not release seq */
objects = PySequence_Fast_ITEMS(seq);
common_type = size > 0 ? Py_TYPE(objects[0]) : NULL;
for (i = 1; i < size; ++i) {
diff --git a/numpy/core/src/multiarray/ctors.c b/numpy/core/src/multiarray/ctors.c
index 23a8dcea2..f77e414da 100644
--- a/numpy/core/src/multiarray/ctors.c
+++ b/numpy/core/src/multiarray/ctors.c
@@ -2024,7 +2024,7 @@ PyArray_FromArray(PyArrayObject *arr, PyArray_Descr *newtype, int flags)
newtype = oldtype;
Py_INCREF(oldtype);
}
- if (PyDataType_ISUNSIZED(newtype)) {
+ else if (PyDataType_ISUNSIZED(newtype)) {
PyArray_DESCR_REPLACE(newtype);
if (newtype == NULL) {
return NULL;
diff --git a/numpy/core/src/multiarray/descriptor.c b/numpy/core/src/multiarray/descriptor.c
index b9be3c09f..3038e4dea 100644
--- a/numpy/core/src/multiarray/descriptor.c
+++ b/numpy/core/src/multiarray/descriptor.c
@@ -257,6 +257,9 @@ _convert_from_tuple(PyObject *obj, int align)
return NULL;
}
PyArray_DESCR_REPLACE(type);
+ if (type == NULL) {
+ return NULL;
+ }
if (type->type_num == NPY_UNICODE) {
type->elsize = itemsize << 2;
}
@@ -1651,6 +1654,9 @@ finish:
if (PyDataType_ISUNSIZED(*at) && (*at)->elsize != elsize) {
PyArray_DESCR_REPLACE(*at);
+ if (*at == NULL) {
+ goto error;
+ }
(*at)->elsize = elsize;
}
if (endian != '=' && PyArray_ISNBO(endian)) {
@@ -1659,6 +1665,9 @@ finish:
if (endian != '=' && (*at)->byteorder != '|'
&& (*at)->byteorder != endian) {
PyArray_DESCR_REPLACE(*at);
+ if (*at == NULL) {
+ goto error;
+ }
(*at)->byteorder = endian;
}
return NPY_SUCCEED;
diff --git a/numpy/core/src/multiarray/lowlevel_strided_loops.c.src b/numpy/core/src/multiarray/lowlevel_strided_loops.c.src
index 159bb4103..896e466c8 100644
--- a/numpy/core/src/multiarray/lowlevel_strided_loops.c.src
+++ b/numpy/core/src/multiarray/lowlevel_strided_loops.c.src
@@ -121,8 +121,8 @@ static void
{
#if @is_aligned@ && @elsize@ != 16
/* sanity check */
- assert(npy_is_aligned(dst, _ALIGN(@type@)));
- assert(npy_is_aligned(src, _ALIGN(@type@)));
+ assert(N == 0 || npy_is_aligned(dst, _ALIGN(@type@)));
+ assert(N == 0 || npy_is_aligned(src, _ALIGN(@type@)));
#endif
/*printf("fn @prefix@_@oper@_size@elsize@\n");*/
while (N > 0) {
@@ -201,8 +201,8 @@ static NPY_GCC_OPT_3 void
}
#if @is_aligned@ && @elsize@ != 16
/* sanity check */
- assert(npy_is_aligned(dst, _ALIGN(@type@)));
- assert(npy_is_aligned(src, _ALIGN(@type@)));
+ assert(N == 0 || npy_is_aligned(dst, _ALIGN(@type@)));
+ assert(N == 0 || npy_is_aligned(src, _ALIGN(@type@)));
#endif
#if @elsize@ == 1 && @dst_contig@
memset(dst, *src, N);
@@ -809,10 +809,10 @@ static NPY_GCC_OPT_3 void
#if @aligned@
/* sanity check */
# if !@is_complex1@
- assert(npy_is_aligned(src, _ALIGN(_TYPE1)));
+ assert(N == 0 || npy_is_aligned(src, _ALIGN(_TYPE1)));
# endif
# if !@is_complex2@
- assert(npy_is_aligned(dst, _ALIGN(_TYPE2)));
+ assert(N == 0 || npy_is_aligned(dst, _ALIGN(_TYPE2)));
# endif
#endif
diff --git a/numpy/core/src/multiarray/methods.c b/numpy/core/src/multiarray/methods.c
index 231bd86dc..7c814e6e6 100644
--- a/numpy/core/src/multiarray/methods.c
+++ b/numpy/core/src/multiarray/methods.c
@@ -187,7 +187,7 @@ array_reshape(PyArrayObject *self, PyObject *args, PyObject *kwds)
}
if (n <= 1) {
- if (PyTuple_GET_ITEM(args, 0) == Py_None) {
+ if (n != 0 && PyTuple_GET_ITEM(args, 0) == Py_None) {
return PyArray_View(self, NULL, NULL);
}
if (!PyArg_ParseTuple(args, "O&:reshape", PyArray_IntpConverter,
@@ -1003,6 +1003,7 @@ any_array_ufunc_overrides(PyObject *args, PyObject *kwds)
int i;
int nin, nout;
PyObject *out_kwd_obj;
+ PyObject *fast;
PyObject **in_objs, **out_objs;
/* check inputs */
@@ -1010,12 +1011,18 @@ any_array_ufunc_overrides(PyObject *args, PyObject *kwds)
if (nin < 0) {
return -1;
}
- in_objs = PySequence_Fast_ITEMS(args);
+ fast = PySequence_Fast(args, "Could not convert object to sequence");
+ if (fast == NULL) {
+ return -1;
+ }
+ in_objs = PySequence_Fast_ITEMS(fast);
for (i = 0; i < nin; ++i) {
if (PyUFunc_HasOverride(in_objs[i])) {
+ Py_DECREF(fast);
return 1;
}
}
+ Py_DECREF(fast);
/* check outputs, if any */
nout = PyUFuncOverride_GetOutObjects(kwds, &out_kwd_obj, &out_objs);
if (nout < 0) {
@@ -1023,9 +1030,11 @@ any_array_ufunc_overrides(PyObject *args, PyObject *kwds)
}
for (i = 0; i < nout; i++) {
if (PyUFunc_HasOverride(out_objs[i])) {
+ Py_DECREF(out_kwd_obj);
return 1;
}
}
+ Py_DECREF(out_kwd_obj);
return 0;
}
diff --git a/numpy/core/src/multiarray/multiarraymodule.c b/numpy/core/src/multiarray/multiarraymodule.c
index ce8af4392..8135769d9 100644
--- a/numpy/core/src/multiarray/multiarraymodule.c
+++ b/numpy/core/src/multiarray/multiarraymodule.c
@@ -982,7 +982,7 @@ PyArray_MatrixProduct2(PyObject *op1, PyObject *op2, PyArrayObject* out)
for (i = 0; i < PyArray_NDIM(ap2) - 2; i++) {
dimensions[j++] = PyArray_DIMS(ap2)[i];
}
- if(PyArray_NDIM(ap2) > 1) {
+ if (PyArray_NDIM(ap2) > 1) {
dimensions[j++] = PyArray_DIMS(ap2)[PyArray_NDIM(ap2)-1];
}
@@ -1318,7 +1318,7 @@ PyArray_Correlate2(PyObject *op1, PyObject *op2, int mode)
*/
if (inverted) {
st = _pyarray_revert(ret);
- if(st) {
+ if (st) {
goto clean_ret;
}
}
@@ -1365,7 +1365,7 @@ PyArray_Correlate(PyObject *op1, PyObject *op2, int mode)
}
ret = _pyarray_correlate(ap1, ap2, typenum, mode, &unused);
- if(ret == NULL) {
+ if (ret == NULL) {
goto fail;
}
Py_DECREF(ap1);
@@ -1654,7 +1654,7 @@ _array_fromobject(PyObject *NPY_UNUSED(ignored), PyObject *args, PyObject *kws)
}
full_path:
- if(!PyArg_ParseTupleAndKeywords(args, kws, "O|O&O&O&O&i:array", kwd,
+ if (!PyArg_ParseTupleAndKeywords(args, kws, "O|O&O&O&O&i:array", kwd,
&op,
PyArray_DescrConverter2, &type,
PyArray_BoolConverter, &copy,
@@ -2489,7 +2489,7 @@ einsum_sub_op_from_lists(PyObject *args,
"operand and a subscripts list to einsum");
return -1;
}
- else if(nop >= NPY_MAXARGS) {
+ else if (nop >= NPY_MAXARGS) {
PyErr_SetString(PyExc_ValueError, "too many operands");
return -1;
}
@@ -2724,7 +2724,7 @@ array_arange(PyObject *NPY_UNUSED(ignored), PyObject *args, PyObject *kws) {
static char *kwd[]= {"start", "stop", "step", "dtype", NULL};
PyArray_Descr *typecode = NULL;
- if(!PyArg_ParseTupleAndKeywords(args, kws, "O|OOO&:arange", kwd,
+ if (!PyArg_ParseTupleAndKeywords(args, kws, "O|OOO&:arange", kwd,
&o_start,
&o_stop,
&o_step,
@@ -2762,7 +2762,7 @@ array__get_ndarray_c_version(PyObject *NPY_UNUSED(dummy), PyObject *args, PyObje
{
static char *kwlist[] = {NULL};
- if(!PyArg_ParseTupleAndKeywords(args, kwds, "", kwlist )) {
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "", kwlist )) {
return NULL;
}
return PyInt_FromLong( (long) PyArray_GetNDArrayCVersion() );
@@ -2835,7 +2835,7 @@ array_set_string_function(PyObject *NPY_UNUSED(self), PyObject *args,
int repr = 1;
static char *kwlist[] = {"f", "repr", NULL};
- if(!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:set_string_function", kwlist, &op, &repr)) {
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:set_string_function", kwlist, &op, &repr)) {
return NULL;
}
/* reset the array_repr function to built-in */
@@ -3145,7 +3145,7 @@ array_promote_types(PyObject *NPY_UNUSED(dummy), PyObject *args)
PyArray_Descr *d1 = NULL;
PyArray_Descr *d2 = NULL;
PyObject *ret = NULL;
- if(!PyArg_ParseTuple(args, "O&O&:promote_types",
+ if (!PyArg_ParseTuple(args, "O&O&:promote_types",
PyArray_DescrConverter2, &d1, PyArray_DescrConverter2, &d2)) {
goto finish;
}
@@ -3171,7 +3171,7 @@ array_min_scalar_type(PyObject *NPY_UNUSED(dummy), PyObject *args)
PyArrayObject *array;
PyObject *ret = NULL;
- if(!PyArg_ParseTuple(args, "O:min_scalar_type", &array_in)) {
+ if (!PyArg_ParseTuple(args, "O:min_scalar_type", &array_in)) {
return NULL;
}
@@ -3248,7 +3248,7 @@ array_datetime_data(PyObject *NPY_UNUSED(dummy), PyObject *args)
PyArray_Descr *dtype;
PyArray_DatetimeMetaData *meta;
- if(!PyArg_ParseTuple(args, "O&:datetime_data",
+ if (!PyArg_ParseTuple(args, "O&:datetime_data",
PyArray_DescrConverter, &dtype)) {
return NULL;
}
@@ -3267,7 +3267,7 @@ new_buffer(PyObject *NPY_UNUSED(dummy), PyObject *args)
{
int size;
- if(!PyArg_ParseTuple(args, "i:buffer", &size)) {
+ if (!PyArg_ParseTuple(args, "i:buffer", &size)) {
return NULL;
}
return PyBuffer_New(size);
@@ -4570,6 +4570,10 @@ PyMODINIT_FUNC init_multiarray_umath(void) {
*/
PyArray_Type.tp_hash = PyObject_HashNotImplemented;
+ if (PyType_Ready(&PyUFunc_Type) < 0) {
+ goto err;
+ }
+
/* Load the ufunc operators into the array module's namespace */
if (InitOperators(d) < 0) {
goto err;
@@ -4580,8 +4584,9 @@ PyMODINIT_FUNC init_multiarray_umath(void) {
}
initialize_casting_tables();
initialize_numeric_types();
- if(initscalarmath(m) < 0)
+ if (initscalarmath(m) < 0) {
goto err;
+ }
if (PyType_Ready(&PyArray_Type) < 0) {
goto err;
diff --git a/numpy/core/src/umath/loops.c.src b/numpy/core/src/umath/loops.c.src
index f96e621b8..ae3ece77b 100644
--- a/numpy/core/src/umath/loops.c.src
+++ b/numpy/core/src/umath/loops.c.src
@@ -1861,7 +1861,8 @@ NPY_NO_EXPORT void
if (!run_unary_reduce_simd_@kind@_@TYPE@(args, dimensions, steps)) {
BINARY_REDUCE_LOOP(@type@) {
const @type@ in2 = *(@type@ *)ip2;
- io1 = (npy_isnan(io1) || io1 @OP@ in2) ? io1 : in2;
+ /* Order of operations important for MSVC 2015 */
+ io1 = (io1 @OP@ in2 || npy_isnan(io1)) ? io1 : in2;
}
*((@type@ *)iop1) = io1;
}
@@ -1870,7 +1871,8 @@ NPY_NO_EXPORT void
BINARY_LOOP {
@type@ in1 = *(@type@ *)ip1;
const @type@ in2 = *(@type@ *)ip2;
- in1 = (npy_isnan(in1) || in1 @OP@ in2) ? in1 : in2;
+ /* Order of operations important for MSVC 2015 */
+ in1 = (in1 @OP@ in2 || npy_isnan(in1)) ? in1 : in2;
*((@type@ *)op1) = in1;
}
}
@@ -1889,7 +1891,8 @@ NPY_NO_EXPORT void
if (IS_BINARY_REDUCE) {
BINARY_REDUCE_LOOP(@type@) {
const @type@ in2 = *(@type@ *)ip2;
- io1 = (npy_isnan(in2) || io1 @OP@ in2) ? io1 : in2;
+ /* Order of operations important for MSVC 2015 */
+ io1 = (io1 @OP@ in2 || npy_isnan(in2)) ? io1 : in2;
}
*((@type@ *)iop1) = io1;
}
@@ -1897,7 +1900,8 @@ NPY_NO_EXPORT void
BINARY_LOOP {
const @type@ in1 = *(@type@ *)ip1;
const @type@ in2 = *(@type@ *)ip2;
- *((@type@ *)op1) = (npy_isnan(in2) || in1 @OP@ in2) ? in1 : in2;
+ /* Order of operations important for MSVC 2015 */
+ *((@type@ *)op1) = (in1 @OP@ in2 || npy_isnan(in2)) ? in1 : in2;
}
}
npy_clear_floatstatus_barrier((char*)dimensions);
diff --git a/numpy/core/src/umath/override.c b/numpy/core/src/umath/override.c
index c56f43fa2..2ea23311b 100644
--- a/numpy/core/src/umath/override.c
+++ b/numpy/core/src/umath/override.c
@@ -86,6 +86,7 @@ get_array_ufunc_overrides(PyObject *args, PyObject *kwds,
++num_override_args;
}
}
+ Py_DECREF(out_kwd_obj);
return num_override_args;
fail:
@@ -93,6 +94,7 @@ fail:
Py_DECREF(with_override[i]);
Py_DECREF(methods[i]);
}
+ Py_DECREF(out_kwd_obj);
return -1;
}
diff --git a/numpy/core/src/umath/simd.inc.src b/numpy/core/src/umath/simd.inc.src
index a3e00b5c1..4bb8569be 100644
--- a/numpy/core/src/umath/simd.inc.src
+++ b/numpy/core/src/umath/simd.inc.src
@@ -32,13 +32,7 @@
#include <float.h>
#include <string.h> /* for memcpy */
-#if defined __AVX512F__
-#define VECTOR_SIZE_BYTES 64
-#elif defined __AVX2__
-#define VECTOR_SIZE_BYTES 32
-#else
#define VECTOR_SIZE_BYTES 16
-#endif
static NPY_INLINE npy_uintp
abs_ptrdiff(char *a, char *b)
@@ -190,17 +184,24 @@ run_binary_simd_@kind@_@TYPE@(char **args, npy_intp *dimensions, npy_intp *steps
@type@ * ip2 = (@type@ *)args[1];
@type@ * op = (@type@ *)args[2];
npy_intp n = dimensions[0];
+#if defined __AVX512F__
+ const npy_intp vector_size_bytes = 64;
+#elif defined __AVX2__
+ const npy_intp vector_size_bytes = 32;
+#else
+ const npy_intp vector_size_bytes = 32;
+#endif
/* argument one scalar */
- if (IS_BLOCKABLE_BINARY_SCALAR1(sizeof(@type@), VECTOR_SIZE_BYTES)) {
+ if (IS_BLOCKABLE_BINARY_SCALAR1(sizeof(@type@), vector_size_bytes)) {
sse2_binary_scalar1_@kind@_@TYPE@(op, ip1, ip2, n);
return 1;
}
/* argument two scalar */
- else if (IS_BLOCKABLE_BINARY_SCALAR2(sizeof(@type@), VECTOR_SIZE_BYTES)) {
+ else if (IS_BLOCKABLE_BINARY_SCALAR2(sizeof(@type@), vector_size_bytes)) {
sse2_binary_scalar2_@kind@_@TYPE@(op, ip1, ip2, n);
return 1;
}
- else if (IS_BLOCKABLE_BINARY(sizeof(@type@), VECTOR_SIZE_BYTES)) {
+ else if (IS_BLOCKABLE_BINARY(sizeof(@type@), vector_size_bytes)) {
sse2_binary_@kind@_@TYPE@(op, ip1, ip2, n);
return 1;
}
@@ -427,19 +428,20 @@ static void
sse2_binary_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_intp n)
{
#ifdef __AVX512F__
- LOOP_BLOCK_ALIGN_VAR(op, @type@, VECTOR_SIZE_BYTES)
+ const npy_intp vector_size_bytes = 64;
+ LOOP_BLOCK_ALIGN_VAR(op, @type@, vector_size_bytes)
op[i] = ip1[i] @OP@ ip2[i];
/* lots of specializations, to squeeze out max performance */
- if (npy_is_aligned(&ip1[i], VECTOR_SIZE_BYTES) && npy_is_aligned(&ip2[i], VECTOR_SIZE_BYTES)) {
+ if (npy_is_aligned(&ip1[i], vector_size_bytes) && npy_is_aligned(&ip2[i], vector_size_bytes)) {
if (ip1 == ip2) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ a = @vpre512@_load_@vsuf@(&ip1[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, a);
@vpre512@_store_@vsuf@(&op[i], c);
}
}
else {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ a = @vpre512@_load_@vsuf@(&ip1[i]);
@vtype512@ b = @vpre512@_load_@vsuf@(&ip2[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, b);
@@ -447,16 +449,16 @@ sse2_binary_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_intp n)
}
}
}
- else if (npy_is_aligned(&ip1[i], VECTOR_SIZE_BYTES)) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ else if (npy_is_aligned(&ip1[i], vector_size_bytes)) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ a = @vpre512@_load_@vsuf@(&ip1[i]);
@vtype512@ b = @vpre512@_loadu_@vsuf@(&ip2[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, b);
@vpre512@_store_@vsuf@(&op[i], c);
}
}
- else if (npy_is_aligned(&ip2[i], VECTOR_SIZE_BYTES)) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ else if (npy_is_aligned(&ip2[i], vector_size_bytes)) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ a = @vpre512@_loadu_@vsuf@(&ip1[i]);
@vtype512@ b = @vpre512@_load_@vsuf@(&ip2[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, b);
@@ -465,14 +467,14 @@ sse2_binary_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_intp n)
}
else {
if (ip1 == ip2) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ a = @vpre512@_loadu_@vsuf@(&ip1[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, a);
@vpre512@_store_@vsuf@(&op[i], c);
}
}
else {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ a = @vpre512@_loadu_@vsuf@(&ip1[i]);
@vtype512@ b = @vpre512@_loadu_@vsuf@(&ip2[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, b);
@@ -481,20 +483,21 @@ sse2_binary_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_intp n)
}
}
#elif __AVX2__
- LOOP_BLOCK_ALIGN_VAR(op, @type@, VECTOR_SIZE_BYTES)
+ const npy_intp vector_size_bytes = 32;
+ LOOP_BLOCK_ALIGN_VAR(op, @type@, vector_size_bytes)
op[i] = ip1[i] @OP@ ip2[i];
/* lots of specializations, to squeeze out max performance */
- if (npy_is_aligned(&ip1[i], VECTOR_SIZE_BYTES) &&
- npy_is_aligned(&ip2[i], VECTOR_SIZE_BYTES)) {
+ if (npy_is_aligned(&ip1[i], vector_size_bytes) &&
+ npy_is_aligned(&ip2[i], vector_size_bytes)) {
if (ip1 == ip2) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ a = @vpre256@_load_@vsuf@(&ip1[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, a);
@vpre256@_store_@vsuf@(&op[i], c);
}
}
else {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ a = @vpre256@_load_@vsuf@(&ip1[i]);
@vtype256@ b = @vpre256@_load_@vsuf@(&ip2[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, b);
@@ -502,16 +505,16 @@ sse2_binary_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_intp n)
}
}
}
- else if (npy_is_aligned(&ip1[i], VECTOR_SIZE_BYTES)) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ else if (npy_is_aligned(&ip1[i], vector_size_bytes)) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ a = @vpre256@_load_@vsuf@(&ip1[i]);
@vtype256@ b = @vpre256@_loadu_@vsuf@(&ip2[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, b);
@vpre256@_store_@vsuf@(&op[i], c);
}
}
- else if (npy_is_aligned(&ip2[i], VECTOR_SIZE_BYTES)) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ else if (npy_is_aligned(&ip2[i], vector_size_bytes)) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ a = @vpre256@_loadu_@vsuf@(&ip1[i]);
@vtype256@ b = @vpre256@_load_@vsuf@(&ip2[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, b);
@@ -520,14 +523,14 @@ sse2_binary_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_intp n)
}
else {
if (ip1 == ip2) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ a = @vpre256@_loadu_@vsuf@(&ip1[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, a);
@vpre256@_store_@vsuf@(&op[i], c);
}
}
else {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ a = @vpre256@_loadu_@vsuf@(&ip1[i]);
@vtype256@ b = @vpre256@_loadu_@vsuf@(&ip2[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, b);
@@ -601,18 +604,19 @@ static void
sse2_binary_scalar1_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_intp n)
{
#ifdef __AVX512F__
+ const npy_intp vector_size_bytes = 64;
const @vtype512@ a = @vpre512@_set1_@vsuf@(ip1[0]);
- LOOP_BLOCK_ALIGN_VAR(op, @type@, VECTOR_SIZE_BYTES)
+ LOOP_BLOCK_ALIGN_VAR(op, @type@, vector_size_bytes)
op[i] = ip1[0] @OP@ ip2[i];
- if (npy_is_aligned(&ip2[i], VECTOR_SIZE_BYTES)) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ if (npy_is_aligned(&ip2[i], vector_size_bytes)) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ b = @vpre512@_load_@vsuf@(&ip2[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, b);
@vpre512@_store_@vsuf@(&op[i], c);
}
}
else {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ b = @vpre512@_loadu_@vsuf@(&ip2[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, b);
@vpre512@_store_@vsuf@(&op[i], c);
@@ -621,18 +625,19 @@ sse2_binary_scalar1_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_i
#elif __AVX2__
+ const npy_intp vector_size_bytes = 32;
const @vtype256@ a = @vpre256@_set1_@vsuf@(ip1[0]);
- LOOP_BLOCK_ALIGN_VAR(op, @type@, VECTOR_SIZE_BYTES)
+ LOOP_BLOCK_ALIGN_VAR(op, @type@, vector_size_bytes)
op[i] = ip1[0] @OP@ ip2[i];
- if (npy_is_aligned(&ip2[i], VECTOR_SIZE_BYTES)) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ if (npy_is_aligned(&ip2[i], vector_size_bytes)) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ b = @vpre256@_load_@vsuf@(&ip2[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, b);
@vpre256@_store_@vsuf@(&op[i], c);
}
}
else {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ b = @vpre256@_loadu_@vsuf@(&ip2[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, b);
@vpre256@_store_@vsuf@(&op[i], c);
@@ -667,18 +672,19 @@ static void
sse2_binary_scalar2_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_intp n)
{
#ifdef __AVX512F__
+ const npy_intp vector_size_bytes = 64;
const @vtype512@ b = @vpre512@_set1_@vsuf@(ip2[0]);
- LOOP_BLOCK_ALIGN_VAR(op, @type@, VECTOR_SIZE_BYTES)
+ LOOP_BLOCK_ALIGN_VAR(op, @type@, vector_size_bytes)
op[i] = ip1[i] @OP@ ip2[0];
- if (npy_is_aligned(&ip1[i], VECTOR_SIZE_BYTES)) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ if (npy_is_aligned(&ip1[i], vector_size_bytes)) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ a = @vpre512@_load_@vsuf@(&ip1[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, b);
@vpre512@_store_@vsuf@(&op[i], c);
}
}
else {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype512@ a = @vpre512@_loadu_@vsuf@(&ip1[i]);
@vtype512@ c = @vpre512@_@VOP@_@vsuf@(a, b);
@vpre512@_store_@vsuf@(&op[i], c);
@@ -686,18 +692,19 @@ sse2_binary_scalar2_@kind@_@TYPE@(@type@ * op, @type@ * ip1, @type@ * ip2, npy_i
}
#elif __AVX2__
+ const npy_intp vector_size_bytes = 32;
const @vtype256@ b = @vpre256@_set1_@vsuf@(ip2[0]);
- LOOP_BLOCK_ALIGN_VAR(op, @type@, VECTOR_SIZE_BYTES)
+ LOOP_BLOCK_ALIGN_VAR(op, @type@, vector_size_bytes)
op[i] = ip1[i] @OP@ ip2[0];
- if (npy_is_aligned(&ip1[i], VECTOR_SIZE_BYTES)) {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ if (npy_is_aligned(&ip1[i], vector_size_bytes)) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ a = @vpre256@_load_@vsuf@(&ip1[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, b);
@vpre256@_store_@vsuf@(&op[i], c);
}
}
else {
- LOOP_BLOCKED(@type@, VECTOR_SIZE_BYTES) {
+ LOOP_BLOCKED(@type@, vector_size_bytes) {
@vtype256@ a = @vpre256@_loadu_@vsuf@(&ip1[i]);
@vtype256@ c = @vpre256@_@VOP@_@vsuf@(a, b);
@vpre256@_store_@vsuf@(&op[i], c);
@@ -1029,7 +1036,8 @@ sse2_@kind@_@TYPE@(@type@ * ip, @type@ * op, const npy_intp n)
{
const npy_intp stride = VECTOR_SIZE_BYTES / (npy_intp)sizeof(@type@);
LOOP_BLOCK_ALIGN_VAR(ip, @type@, VECTOR_SIZE_BYTES) {
- *op = (npy_isnan(*op) || *op @OP@ ip[i]) ? *op : ip[i];
+ /* Order of operations important for MSVC 2015 */
+ *op = (*op @OP@ ip[i] || npy_isnan(*op)) ? *op : ip[i];
}
assert(n < (stride) || npy_is_aligned(&ip[i], VECTOR_SIZE_BYTES));
if (i + 3 * stride <= n) {
@@ -1053,11 +1061,13 @@ sse2_@kind@_@TYPE@(@type@ * ip, @type@ * op, const npy_intp n)
}
else {
@type@ tmp = sse2_horizontal_@VOP@_@vtype@(c1);
- *op = (npy_isnan(*op) || *op @OP@ tmp) ? *op : tmp;
+ /* Order of operations important for MSVC 2015 */
+ *op = (*op @OP@ tmp || npy_isnan(*op)) ? *op : tmp;
}
}
LOOP_BLOCKED_END {
- *op = (npy_isnan(*op) || *op @OP@ ip[i]) ? *op : ip[i];
+ /* Order of operations important for MSVC 2015 */
+ *op = (*op @OP@ ip[i] || npy_isnan(*op)) ? *op : ip[i];
}
npy_clear_floatstatus_barrier((char*)op);
}
diff --git a/numpy/core/src/umath/umathmodule.c b/numpy/core/src/umath/umathmodule.c
index 8277ad6cc..5de19fec2 100644
--- a/numpy/core/src/umath/umathmodule.c
+++ b/numpy/core/src/umath/umathmodule.c
@@ -268,10 +268,6 @@ int initumath(PyObject *m)
UFUNC_FLOATING_POINT_SUPPORT = 0;
#endif
- /* Initialize the types */
- if (PyType_Ready(&PyUFunc_Type) < 0)
- return -1;
-
/* Add some symbolic constants to the module */
d = PyModule_GetDict(m);
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py
index cdacdabbe..951c01c6d 100644
--- a/numpy/core/tests/test_multiarray.py
+++ b/numpy/core/tests/test_multiarray.py
@@ -7626,6 +7626,55 @@ class TestCTypes(object):
finally:
_internal.ctypes = ctypes
+ def _make_readonly(x):
+ x.flags.writeable = False
+ return x
+
+ @pytest.mark.parametrize('arr', [
+ np.array([1, 2, 3]),
+ np.array([['one', 'two'], ['three', 'four']]),
+ np.array((1, 2), dtype='i4,i4'),
+ np.zeros((2,), dtype=
+ np.dtype(dict(
+ formats=['<i4', '<i4'],
+ names=['a', 'b'],
+ offsets=[0, 2],
+ itemsize=6
+ ))
+ ),
+ np.array([None], dtype=object),
+ np.array([]),
+ np.empty((0, 0)),
+ _make_readonly(np.array([1, 2, 3])),
+ ], ids=[
+ '1d',
+ '2d',
+ 'structured',
+ 'overlapping',
+ 'object',
+ 'empty',
+ 'empty-2d',
+ 'readonly'
+ ])
+ def test_ctypes_data_as_holds_reference(self, arr):
+ # gh-9647
+ # create a copy to ensure that pytest does not mess with the refcounts
+ arr = arr.copy()
+
+ arr_ref = weakref.ref(arr)
+
+ ctypes_ptr = arr.ctypes.data_as(ctypes.c_void_p)
+
+ # `ctypes_ptr` should hold onto `arr`
+ del arr
+ gc.collect()
+ assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference")
+
+ # but when the `ctypes_ptr` object dies, so should `arr`
+ del ctypes_ptr
+ gc.collect()
+ assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
+
class TestWritebackIfCopy(object):
# all these tests use the WRITEBACKIFCOPY mechanism
@@ -7923,6 +7972,44 @@ def test_uintalignment_and_alignment():
dst = np.zeros((2,2), dtype='c8')
dst[:,1] = src[:,1] # assert in lowlevel_strided_loops fails?
+class TestAlignment(object):
+ # adapted from scipy._lib.tests.test__util.test__aligned_zeros
+ # Checks that unusual memory alignments don't trip up numpy.
+ # In particular, check RELAXED_STRIDES don't trip alignment assertions in
+ # NDEBUG mode for size-0 arrays (gh-12503)
+
+ def check(self, shape, dtype, order, align):
+ err_msg = repr((shape, dtype, order, align))
+ x = _aligned_zeros(shape, dtype, order, align=align)
+ if align is None:
+ align = np.dtype(dtype).alignment
+ assert_equal(x.__array_interface__['data'][0] % align, 0)
+ if hasattr(shape, '__len__'):
+ assert_equal(x.shape, shape, err_msg)
+ else:
+ assert_equal(x.shape, (shape,), err_msg)
+ assert_equal(x.dtype, dtype)
+ if order == "C":
+ assert_(x.flags.c_contiguous, err_msg)
+ elif order == "F":
+ if x.size > 0:
+ assert_(x.flags.f_contiguous, err_msg)
+ elif order is None:
+ assert_(x.flags.c_contiguous, err_msg)
+ else:
+ raise ValueError()
+
+ def test_various_alignments(self):
+ for align in [1, 2, 3, 4, 8, 16, 32, 64, None]:
+ for n in [0, 1, 3, 11]:
+ for order in ["C", "F", None]:
+ for dtype in np.typecodes["All"]:
+ if dtype == 'O':
+ # object dtype can't be misaligned
+ continue
+ for shape in [n, (1, 2, 3, n)]:
+ self.check(shape, np.dtype(dtype), order, align)
+
def test_getfield():
a = np.arange(32, dtype='uint16')
if sys.byteorder == 'little':
diff --git a/numpy/ctypeslib.py b/numpy/ctypeslib.py
index 11368587f..2e9781286 100644
--- a/numpy/ctypeslib.py
+++ b/numpy/ctypeslib.py
@@ -93,7 +93,7 @@ else:
def load_library(libname, loader_path):
"""
It is possible to load a library using
- >>> lib = ctypes.cdll[<full_path_name>]
+ >>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP
But there are cross-platform considerations, such as library file extensions,
plus the fact Windows will just load the first library it finds with that name.
@@ -401,5 +401,5 @@ if ctypes is not None:
raise TypeError("readonly arrays unsupported")
tp = _ctype_ndarray(_typecodes[ai["typestr"]], ai["shape"])
result = tp.from_address(addr)
- result.__keep = ai
+ result.__keep = obj
return result
diff --git a/numpy/distutils/ccompiler.py b/numpy/distutils/ccompiler.py
index 5b7cb3fcf..100d0d069 100644
--- a/numpy/distutils/ccompiler.py
+++ b/numpy/distutils/ccompiler.py
@@ -17,7 +17,9 @@ from distutils.version import LooseVersion
from numpy.distutils import log
from numpy.distutils.compat import get_exception
-from numpy.distutils.exec_command import filepath_from_subprocess_output
+from numpy.distutils.exec_command import (
+ filepath_from_subprocess_output, forward_bytes_to_stdout
+)
from numpy.distutils.misc_util import cyg2win32, is_sequence, mingw32, \
get_num_build_jobs, \
_commandline_dep_string
@@ -159,11 +161,9 @@ def CCompiler_spawn(self, cmd, display=None):
if is_sequence(cmd):
cmd = ' '.join(list(cmd))
- try:
- print(o)
- except UnicodeError:
- # When installing through pip, `o` can contain non-ascii chars
- pass
+
+ forward_bytes_to_stdout(o)
+
if re.search(b'Too many open files', o):
msg = '\nTry rerunning setup command until build succeeds.'
else:
diff --git a/numpy/distutils/exec_command.py b/numpy/distutils/exec_command.py
index aaeca99ee..ede347b03 100644
--- a/numpy/distutils/exec_command.py
+++ b/numpy/distutils/exec_command.py
@@ -81,6 +81,29 @@ def filepath_from_subprocess_output(output):
output = output.encode('ascii', errors='replace')
return output
+
+def forward_bytes_to_stdout(val):
+ """
+ Forward bytes from a subprocess call to the console, without attempting to
+ decode them.
+
+ The assumption is that the subprocess call already returned bytes in
+ a suitable encoding.
+ """
+ if sys.version_info.major < 3:
+ # python 2 has binary output anyway
+ sys.stdout.write(val)
+ elif hasattr(sys.stdout, 'buffer'):
+ # use the underlying binary output if there is one
+ sys.stdout.buffer.write(val)
+ elif hasattr(sys.stdout, 'encoding'):
+ # round-trip the encoding if necessary
+ sys.stdout.write(val.decode(sys.stdout.encoding))
+ else:
+ # make a best-guess at the encoding
+ sys.stdout.write(val.decode('utf8', errors='replace'))
+
+
def temp_file_name():
fo, name = make_temp_file()
fo.close()
diff --git a/numpy/doc/glossary.py b/numpy/doc/glossary.py
index a3b9423a8..a3707340d 100644
--- a/numpy/doc/glossary.py
+++ b/numpy/doc/glossary.py
@@ -270,13 +270,11 @@ Glossary
masked_array(data = [-- 2.0 --],
mask = [ True False True],
fill_value = 1e+20)
- <BLANKLINE>
>>> x + [1, 2, 3]
masked_array(data = [-- 4.0 --],
mask = [ True False True],
fill_value = 1e+20)
- <BLANKLINE>
Masked arrays are often used when operating on arrays containing
diff --git a/numpy/doc/structured_arrays.py b/numpy/doc/structured_arrays.py
index 0fcdecf00..e92a06124 100644
--- a/numpy/doc/structured_arrays.py
+++ b/numpy/doc/structured_arrays.py
@@ -397,6 +397,15 @@ typically a non-structured array, except in the case of nested structures.
>>> y.dtype, y.shape, y.strides
(dtype('float32'), (2,), (12,))
+If the accessed field is a subarray, the dimensions of the subarray
+are appended to the shape of the result::
+
+ >>> x = np.zeros((2,2), dtype=[('a', np.int32), ('b', np.float64, (3,3))])
+ >>> x['a'].shape
+ (2, 2)
+ >>> x['b'].shape
+ (2, 2, 3, 3)
+
Accessing Multiple Fields
```````````````````````````
diff --git a/numpy/fft/fftpack.py b/numpy/fft/fftpack.py
index de675936f..d0df6fb48 100644
--- a/numpy/fft/fftpack.py
+++ b/numpy/fft/fftpack.py
@@ -177,19 +177,17 @@ def fft(a, n=None, axis=-1, norm=None):
Examples
--------
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
- array([ -3.44505240e-16 +1.14383329e-17j,
- 8.00000000e+00 -5.71092652e-15j,
- 2.33482938e-16 +1.22460635e-16j,
- 1.64863782e-15 +1.77635684e-15j,
- 9.95839695e-17 +2.33482938e-16j,
- 0.00000000e+00 +1.66837030e-15j,
- 1.14383329e-17 +1.22460635e-16j,
- -1.64863782e-15 +1.77635684e-15j])
+ array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j,
+ 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j,
+ -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j,
+ 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j])
In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the `numpy.fft` documentation:
+ >>> import matplotlib
+ >>> matplotlib.use('Agg')
>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
@@ -278,19 +276,21 @@ def ifft(a, n=None, axis=-1, norm=None):
Examples
--------
>>> np.fft.ifft([0, 4, 0, 0])
- array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])
+ array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary
Create and plot a band-limited signal with random phases:
+ >>> import matplotlib
+ >>> matplotlib.use('agg')
>>> import matplotlib.pyplot as plt
>>> t = np.arange(400)
>>> n = np.zeros((400,), dtype=complex)
>>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
>>> s = np.fft.ifft(n)
>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
- ...
+ [<matplotlib.lines.Line2D object at ...>, <matplotlib.lines.Line2D object at ...>]
>>> plt.legend(('real', 'imaginary'))
- ...
+ <matplotlib.legend.Legend object at ...>
>>> plt.show()
"""
@@ -374,9 +374,9 @@ def rfft(a, n=None, axis=-1, norm=None):
Examples
--------
>>> np.fft.fft([0, 1, 0, 0])
- array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j])
+ array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary
>>> np.fft.rfft([0, 1, 0, 0])
- array([ 1.+0.j, 0.-1.j, -1.+0.j])
+ array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary
Notice how the final element of the `fft` output is the complex conjugate
of the second element, for real input. For `rfft`, this symmetry is
@@ -465,9 +465,9 @@ def irfft(a, n=None, axis=-1, norm=None):
Examples
--------
>>> np.fft.ifft([1, -1j, -1, 1j])
- array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j])
+ array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary
>>> np.fft.irfft([1, -1j, -1])
- array([ 0., 1., 0., 0.])
+ array([0., 1., 0., 0.])
Notice how the last term in the input to the ordinary `ifft` is the
complex conjugate of the second term, and the output has zero imaginary
@@ -543,16 +543,16 @@ def hfft(a, n=None, axis=-1, norm=None):
--------
>>> signal = np.array([1, 2, 3, 4, 3, 2])
>>> np.fft.fft(signal)
- array([ 15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j])
+ array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary
>>> np.fft.hfft(signal[:4]) # Input first half of signal
- array([ 15., -4., 0., -1., 0., -4.])
+ array([15., -4., 0., -1., 0., -4.])
>>> np.fft.hfft(signal, 6) # Input entire signal and truncate
- array([ 15., -4., 0., -1., 0., -4.])
+ array([15., -4., 0., -1., 0., -4.])
>>> signal = np.array([[1, 1.j], [-1.j, 2]])
>>> np.conj(signal.T) - signal # check Hermitian symmetry
- array([[ 0.-0.j, 0.+0.j],
+ array([[ 0.-0.j, -0.+0.j], # may vary
[ 0.+0.j, 0.-0.j]])
>>> freq_spectrum = np.fft.hfft(signal)
>>> freq_spectrum
@@ -616,9 +616,9 @@ def ihfft(a, n=None, axis=-1, norm=None):
--------
>>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
>>> np.fft.ifft(spectrum)
- array([ 1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j])
+ array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary
>>> np.fft.ihfft(spectrum)
- array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j])
+ array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary
"""
# The copy may be required for multithreading.
@@ -732,17 +732,17 @@ def fftn(a, s=None, axes=None, norm=None):
--------
>>> a = np.mgrid[:3, :3, :3][0]
>>> np.fft.fftn(a, axes=(1, 2))
- array([[[ 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j]],
- [[ 9.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j]],
- [[ 18.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j]]])
+ array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
+ [[ 9.+0.j, 0.+0.j, 0.+0.j],
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
+ [[18.+0.j, 0.+0.j, 0.+0.j],
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
+ [ 0.+0.j, 0.+0.j, 0.+0.j]]])
>>> np.fft.fftn(a, (2, 2), axes=(0, 1))
- array([[[ 2.+0.j, 2.+0.j, 2.+0.j],
+ array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary
[ 0.+0.j, 0.+0.j, 0.+0.j]],
[[-2.+0.j, -2.+0.j, -2.+0.j],
[ 0.+0.j, 0.+0.j, 0.+0.j]]])
@@ -838,10 +838,10 @@ def ifftn(a, s=None, axes=None, norm=None):
--------
>>> a = np.eye(4)
>>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
- array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])
+ array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
+ [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
+ [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
+ [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])
Create and plot an image with band-limited frequency content:
@@ -934,16 +934,16 @@ def fft2(a, s=None, axes=(-2, -1), norm=None):
--------
>>> a = np.mgrid[:5, :5][0]
>>> np.fft.fft2(a)
- array([[ 50.0 +0.j , 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ],
- [-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ],
- [-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ],
- [-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ],
- [-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j ,
- 0.0 +0.j , 0.0 +0.j ]])
+ array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary
+ 0. +0.j , 0. +0.j ],
+ [-12.5+17.20477401j, 0. +0.j , 0. +0.j ,
+ 0. +0.j , 0. +0.j ],
+ [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ,
+ 0. +0.j , 0. +0.j ],
+ [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ,
+ 0. +0.j , 0. +0.j ],
+ [-12.5-17.20477401j, 0. +0.j , 0. +0.j ,
+ 0. +0.j , 0. +0.j ]])
"""
@@ -1028,10 +1028,10 @@ def ifft2(a, s=None, axes=(-2, -1), norm=None):
--------
>>> a = 4 * np.eye(4)
>>> np.fft.ifft2(a)
- array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
- [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
- [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
+ array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
+ [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
+ [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
+ [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
"""
@@ -1110,16 +1110,16 @@ def rfftn(a, s=None, axes=None, norm=None):
--------
>>> a = np.ones((2, 2, 2))
>>> np.fft.rfftn(a)
- array([[[ 8.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j]],
- [[ 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j]]])
+ array([[[8.+0.j, 0.+0.j], # may vary
+ [0.+0.j, 0.+0.j]],
+ [[0.+0.j, 0.+0.j],
+ [0.+0.j, 0.+0.j]]])
>>> np.fft.rfftn(a, axes=(2, 0))
- array([[[ 4.+0.j, 0.+0.j],
- [ 4.+0.j, 0.+0.j]],
- [[ 0.+0.j, 0.+0.j],
- [ 0.+0.j, 0.+0.j]]])
+ array([[[4.+0.j, 0.+0.j], # may vary
+ [4.+0.j, 0.+0.j]],
+ [[0.+0.j, 0.+0.j],
+ [0.+0.j, 0.+0.j]]])
"""
# The copy may be required for multithreading.
@@ -1247,12 +1247,12 @@ def irfftn(a, s=None, axes=None, norm=None):
>>> a = np.zeros((3, 2, 2))
>>> a[0, 0, 0] = 3 * 2 * 2
>>> np.fft.irfftn(a)
- array([[[ 1., 1.],
- [ 1., 1.]],
- [[ 1., 1.],
- [ 1., 1.]],
- [[ 1., 1.],
- [ 1., 1.]]])
+ array([[[1., 1.],
+ [1., 1.]],
+ [[1., 1.],
+ [1., 1.]],
+ [[1., 1.],
+ [1., 1.]]])
"""
# The copy may be required for multithreading.
diff --git a/numpy/fft/helper.py b/numpy/fft/helper.py
index 864768df5..9985f6d4c 100644
--- a/numpy/fft/helper.py
+++ b/numpy/fft/helper.py
@@ -52,7 +52,7 @@ def fftshift(x, axes=None):
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
- array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
+ array([ 0., 1., 2., ..., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
@@ -162,7 +162,7 @@ def fftfreq(n, d=1.0):
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
- array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
+ array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
"""
if not isinstance(n, integer_types):
@@ -215,7 +215,7 @@ def rfftfreq(n, d=1.0):
>>> sample_rate = 100
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
>>> freq
- array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
+ array([ 0., 10., 20., ..., -30., -20., -10.])
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
>>> freq
array([ 0., 10., 20., 30., 40., 50.])
diff --git a/numpy/lib/_datasource.py b/numpy/lib/_datasource.py
index 30237b76f..3a0e67f60 100644
--- a/numpy/lib/_datasource.py
+++ b/numpy/lib/_datasource.py
@@ -20,17 +20,18 @@ gzip, bz2 and xz are supported.
Example::
>>> # Create a DataSource, use os.curdir (default) for local storage.
- >>> ds = datasource.DataSource()
+ >>> from numpy import DataSource
+ >>> ds = DataSource()
>>>
>>> # Open a remote file.
>>> # DataSource downloads the file, stores it locally in:
>>> # './www.google.com/index.html'
>>> # opens the file and returns a file object.
- >>> fp = ds.open('http://www.google.com/index.html')
+ >>> fp = ds.open('http://www.google.com/') # doctest: +SKIP
>>>
>>> # Use the file as you normally would
- >>> fp.read()
- >>> fp.close()
+ >>> fp.read() # doctest: +SKIP
+ >>> fp.close() # doctest: +SKIP
"""
from __future__ import division, absolute_import, print_function
@@ -156,6 +157,7 @@ class _FileOpeners(object):
Examples
--------
+ >>> import gzip
>>> np.lib._datasource._file_openers.keys()
[None, '.bz2', '.gz', '.xz', '.lzma']
>>> np.lib._datasource._file_openers['.gz'] is gzip.open
@@ -290,7 +292,7 @@ class DataSource(object):
URLs require a scheme string (``http://``) to be used, without it they
will fail::
- >>> repos = DataSource()
+ >>> repos = np.DataSource()
>>> repos.exists('www.google.com/index.html')
False
>>> repos.exists('http://www.google.com/index.html')
@@ -302,17 +304,17 @@ class DataSource(object):
--------
::
- >>> ds = DataSource('/home/guido')
- >>> urlname = 'http://www.google.com/index.html'
- >>> gfile = ds.open('http://www.google.com/index.html') # remote file
+ >>> ds = np.DataSource('/home/guido')
+ >>> urlname = 'http://www.google.com/'
+ >>> gfile = ds.open('http://www.google.com/')
>>> ds.abspath(urlname)
- '/home/guido/www.google.com/site/index.html'
+ '/home/guido/www.google.com/index.html'
- >>> ds = DataSource(None) # use with temporary file
+ >>> ds = np.DataSource(None) # use with temporary file
>>> ds.open('/home/guido/foobar.txt')
<open file '/home/guido.foobar.txt', mode 'r' at 0x91d4430>
>>> ds.abspath('/home/guido/foobar.txt')
- '/tmp/tmpy4pgsP/home/guido/foobar.txt'
+ '/tmp/.../home/guido/foobar.txt'
"""
diff --git a/numpy/lib/_iotools.py b/numpy/lib/_iotools.py
index 8a042f190..0ebd39b8c 100644
--- a/numpy/lib/_iotools.py
+++ b/numpy/lib/_iotools.py
@@ -146,11 +146,17 @@ def flatten_dtype(ndtype, flatten_base=False):
>>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
... ('block', int, (2, 3))])
>>> np.lib._iotools.flatten_dtype(dt)
- [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
+ [dtype('S4'), dtype('float64'), dtype('float64'), dtype('int64')]
>>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
- [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
- dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
- dtype('int32')]
+ [dtype('S4'),
+ dtype('float64'),
+ dtype('float64'),
+ dtype('int64'),
+ dtype('int64'),
+ dtype('int64'),
+ dtype('int64'),
+ dtype('int64'),
+ dtype('int64')]
"""
names = ndtype.names
@@ -309,13 +315,13 @@ class NameValidator(object):
--------
>>> validator = np.lib._iotools.NameValidator()
>>> validator(['file', 'field2', 'with space', 'CaSe'])
- ['file_', 'field2', 'with_space', 'CaSe']
+ ('file_', 'field2', 'with_space', 'CaSe')
>>> validator = np.lib._iotools.NameValidator(excludelist=['excl'],
- deletechars='q',
- case_sensitive='False')
+ ... deletechars='q',
+ ... case_sensitive=False)
>>> validator(['excl', 'field2', 'no_q', 'with space', 'CaSe'])
- ['excl_', 'field2', 'no_', 'with_space', 'case']
+ ('EXCL', 'FIELD2', 'NO_Q', 'WITH_SPACE', 'CASE')
"""
#
@@ -599,7 +605,7 @@ class StringConverter(object):
--------
>>> import dateutil.parser
>>> import datetime
- >>> dateparser = datetustil.parser.parse
+ >>> dateparser = dateutil.parser.parse
>>> defaultdate = datetime.date(2000, 1, 1)
>>> StringConverter.upgrade_mapper(dateparser, default=defaultdate)
"""
diff --git a/numpy/lib/_version.py b/numpy/lib/_version.py
index c3563a7fa..8aa999fc9 100644
--- a/numpy/lib/_version.py
+++ b/numpy/lib/_version.py
@@ -47,9 +47,12 @@ class NumpyVersion():
>>> from numpy.lib import NumpyVersion
>>> if NumpyVersion(np.__version__) < '1.7.0':
... print('skip')
- skip
+ >>> # skip
>>> NumpyVersion('1.7') # raises ValueError, add ".0"
+ Traceback (most recent call last):
+ ...
+ ValueError: Not a valid numpy version string
"""
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py
index 4f6371058..b236cc449 100644
--- a/numpy/lib/arraypad.py
+++ b/numpy/lib/arraypad.py
@@ -1100,10 +1100,10 @@ def pad(array, pad_width, mode, **kwargs):
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2,3), 'constant', constant_values=(4, 6))
- array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])
+ array([4, 4, 1, ..., 6, 6, 6])
>>> np.pad(a, (2, 3), 'edge')
- array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])
+ array([1, 1, 1, ..., 5, 5, 5])
>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index fd64ecbd6..558150e48 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -82,7 +82,7 @@ def ediff1d(ary, to_end=None, to_begin=None):
array([ 1, 2, 3, -7])
>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
- array([-99, 1, 2, 3, -7, 88, 99])
+ array([-99, 1, 2, ..., -7, 88, 99])
The returned array is always 1D.
@@ -241,13 +241,11 @@ def unique(ar, return_index=False, return_inverse=False,
>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
- array(['a', 'b', 'c'],
- dtype='|S1')
+ array(['a', 'b', 'c'], dtype='<U1')
>>> indices
array([0, 1, 3])
>>> a[indices]
- array(['a', 'b', 'c'],
- dtype='|S1')
+ array(['a', 'b', 'c'], dtype='<U1')
Reconstruct the input array from the unique values:
@@ -256,9 +254,9 @@ def unique(ar, return_index=False, return_inverse=False,
>>> u
array([1, 2, 3, 4, 6])
>>> indices
- array([0, 1, 4, 3, 1, 2, 1])
+ array([0, 1, 4, ..., 1, 2, 1])
>>> u[indices]
- array([1, 2, 6, 4, 2, 3, 2])
+ array([1, 2, 6, ..., 2, 3, 2])
"""
ar = np.asanyarray(ar)
@@ -661,8 +659,8 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> test_elements = [1, 2, 4, 8]
>>> mask = np.isin(element, test_elements)
>>> mask
- array([[ False, True],
- [ True, False]])
+ array([[False, True],
+ [ True, False]])
>>> element[mask]
array([2, 4])
@@ -676,7 +674,7 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[ True, False],
- [ False, True]])
+ [False, True]])
>>> element[mask]
array([0, 6])
@@ -685,14 +683,14 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
- array([[ False, False],
- [ False, False]])
+ array([[False, False],
+ [False, False]])
Casting the set to a list gives the expected result:
>>> np.isin(element, list(test_set))
- array([[ False, True],
- [ True, False]])
+ array([[False, True],
+ [ True, False]])
"""
element = np.asarray(element)
return in1d(element, test_elements, assume_unique=assume_unique,
diff --git a/numpy/lib/arrayterator.py b/numpy/lib/arrayterator.py
index f2d4fe9fd..c16668582 100644
--- a/numpy/lib/arrayterator.py
+++ b/numpy/lib/arrayterator.py
@@ -80,9 +80,8 @@ class Arrayterator(object):
>>> for subarr in a_itor:
... if not subarr.all():
- ... print(subarr, subarr.shape)
- ...
- [[[[0 1]]]] (1, 1, 1, 2)
+ ... print(subarr, subarr.shape) # doctest: +SKIP
+ >>> # [[[[0 1]]]] (1, 1, 1, 2)
"""
@@ -160,7 +159,7 @@ class Arrayterator(object):
... if not subarr:
... print(subarr, type(subarr))
...
- 0 <type 'numpy.int32'>
+ 0 <class 'numpy.int64'>
"""
for block in self:
diff --git a/numpy/lib/financial.py b/numpy/lib/financial.py
index e1e297492..216687475 100644
--- a/numpy/lib/financial.py
+++ b/numpy/lib/financial.py
@@ -127,7 +127,7 @@ def fv(rate, nper, pmt, pv, when='end'):
>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
- array([ 15692.92889434, 16569.87435405, 17509.44688102])
+ array([ 15692.92889434, 16569.87435405, 17509.44688102]) # may vary
"""
when = _convert_when(when)
@@ -275,7 +275,7 @@ def nper(rate, pmt, pv, fv=0, when='end'):
If you only had $150/month to pay towards the loan, how long would it take
to pay-off a loan of $8,000 at 7% annual interest?
- >>> print(round(np.nper(0.07/12, -150, 8000), 5))
+ >>> print(np.round(np.nper(0.07/12, -150, 8000), 5))
64.07335
So, over 64 months would be required to pay off the loan.
@@ -286,10 +286,10 @@ def nper(rate, pmt, pv, fv=0, when='end'):
>>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
... -150 : -99 : 50 ,
... 8000 : 9001 : 1000]))
- array([[[ 64.07334877, 74.06368256],
- [ 108.07548412, 127.99022654]],
- [[ 66.12443902, 76.87897353],
- [ 114.70165583, 137.90124779]]])
+ array([[[ 64.07334877, 74.06368256],
+ [108.07548412, 127.99022654]],
+ [[ 66.12443902, 76.87897353],
+ [114.70165583, 137.90124779]]])
"""
when = _convert_when(when)
@@ -539,7 +539,7 @@ def pv(rate, nper, pmt, fv=0, when='end'):
>>> a = np.array((0.05, 0.04, 0.03))/12
>>> np.pv(a, 10*12, -100, 15692.93)
- array([ -100.00067132, -649.26771385, -1273.78633713])
+ array([ -100.00067132, -649.26771385, -1273.78633713]) # may vary
So, to end up with the same $15692.93 under the same $100 per month
"savings plan," for annual interest rates of 4% and 3%, one would
@@ -704,15 +704,15 @@ def irr(values):
Examples
--------
- >>> round(irr([-100, 39, 59, 55, 20]), 5)
+ >>> round(np.irr([-100, 39, 59, 55, 20]), 5)
0.28095
- >>> round(irr([-100, 0, 0, 74]), 5)
+ >>> round(np.irr([-100, 0, 0, 74]), 5)
-0.0955
- >>> round(irr([-100, 100, 0, -7]), 5)
+ >>> round(np.irr([-100, 100, 0, -7]), 5)
-0.0833
- >>> round(irr([-100, 100, 0, 7]), 5)
+ >>> round(np.irr([-100, 100, 0, 7]), 5)
0.06206
- >>> round(irr([-5, 10.5, 1, -8, 1]), 5)
+ >>> round(np.irr([-5, 10.5, 1, -8, 1]), 5)
0.0886
(Compare with the Example given for numpy.lib.financial.npv)
@@ -777,7 +777,7 @@ def npv(rate, values):
Examples
--------
>>> np.npv(0.281,[-100, 39, 59, 55, 20])
- -0.0084785916384548798
+ -0.0084785916384548798 # may vary
(Compare with the Example given for numpy.lib.financial.irr)
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 5f87c8b2c..1ead375de 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -218,12 +218,12 @@ def flip(m, axis=None):
[2, 3]],
[[4, 5],
[6, 7]]])
- >>> flip(A, 0)
+ >>> np.flip(A, 0)
array([[[4, 5],
[6, 7]],
[[0, 1],
[2, 3]]])
- >>> flip(A, 1)
+ >>> np.flip(A, 1)
array([[[2, 3],
[0, 1]],
[[6, 7],
@@ -239,7 +239,7 @@ def flip(m, axis=None):
[[1, 0],
[3, 2]]])
>>> A = np.random.randn(3,4,5)
- >>> np.all(flip(A,2) == A[:,:,::-1,...])
+ >>> np.all(np.flip(A,2) == A[:,:,::-1,...])
True
"""
if not hasattr(m, 'ndim'):
@@ -359,7 +359,7 @@ def average(a, axis=None, weights=None, returned=False):
Examples
--------
- >>> data = range(1,5)
+ >>> data = list(range(1,5))
>>> data
[1, 2, 3, 4]
>>> np.average(data)
@@ -373,11 +373,10 @@ def average(a, axis=None, weights=None, returned=False):
[2, 3],
[4, 5]])
>>> np.average(data, axis=1, weights=[1./4, 3./4])
- array([ 0.75, 2.75, 4.75])
+ array([0.75, 2.75, 4.75])
>>> np.average(data, weights=[1./4, 3./4])
-
Traceback (most recent call last):
- ...
+ ...
TypeError: Axis must be specified when shapes of a and weights differ.
>>> a = np.ones(5, dtype=np.float128)
@@ -586,7 +585,7 @@ def piecewise(x, condlist, funclist, *args, **kw):
``x >= 0``.
>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
- array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5])
+ array([2.5, 1.5, 0.5, 0.5, 1.5, 2.5])
Apply the same function to a scalar value.
@@ -671,7 +670,7 @@ def select(condlist, choicelist, default=0):
>>> condlist = [x<3, x>5]
>>> choicelist = [x, x**2]
>>> np.select(condlist, choicelist)
- array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81])
+ array([ 0, 1, 2, ..., 49, 64, 81])
"""
# Check the size of condlist and choicelist are the same, or abort.
@@ -854,9 +853,9 @@ def gradient(f, *varargs, **kwargs):
--------
>>> f = np.array([1, 2, 4, 7, 11, 16], dtype=float)
>>> np.gradient(f)
- array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ])
+ array([1. , 1.5, 2.5, 3.5, 4.5, 5. ])
>>> np.gradient(f, 2)
- array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ])
+ array([0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ])
Spacing can be also specified with an array that represents the coordinates
of the values F along the dimensions.
@@ -864,13 +863,13 @@ def gradient(f, *varargs, **kwargs):
>>> x = np.arange(f.size)
>>> np.gradient(f, x)
- array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ])
+ array([1. , 1.5, 2.5, 3.5, 4.5, 5. ])
Or a non uniform one:
>>> x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype=float)
>>> np.gradient(f, x)
- array([ 1. , 3. , 3.5, 6.7, 6.9, 2.5])
+ array([1. , 3. , 3.5, 6.7, 6.9, 2.5])
For two dimensional arrays, the return will be two arrays ordered by
axis. In this example the first array stands for the gradient in
@@ -878,8 +877,8 @@ def gradient(f, *varargs, **kwargs):
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float))
[array([[ 2., 2., -1.],
- [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ],
- [ 1. , 1. , 1. ]])]
+ [ 2., 2., -1.]]), array([[1. , 2.5, 4. ],
+ [1. , 1. , 1. ]])]
In this example the spacing is also specified:
uniform for axis=0 and non uniform for axis=1
@@ -888,17 +887,17 @@ def gradient(f, *varargs, **kwargs):
>>> y = [1., 1.5, 3.5]
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), dx, y)
[array([[ 1. , 1. , -0.5],
- [ 1. , 1. , -0.5]]), array([[ 2. , 2. , 2. ],
- [ 2. , 1.7, 0.5]])]
+ [ 1. , 1. , -0.5]]), array([[2. , 2. , 2. ],
+ [2. , 1.7, 0.5]])]
It is possible to specify how boundaries are treated using `edge_order`
>>> x = np.array([0, 1, 2, 3, 4])
>>> f = x**2
>>> np.gradient(f, edge_order=1)
- array([ 1., 2., 4., 6., 7.])
+ array([1., 2., 4., 6., 7.])
>>> np.gradient(f, edge_order=2)
- array([-0., 2., 4., 6., 8.])
+ array([0., 2., 4., 6., 8.])
The `axis` keyword can be used to specify a subset of axes of which the
gradient is calculated
@@ -1200,7 +1199,7 @@ def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue):
>>> np.diff(u8_arr)
array([255], dtype=uint8)
>>> u8_arr[1,...] - u8_arr[0,...]
- array(255, np.uint8)
+ 255
If this is not desirable, then the array should be cast to a larger
integer type first:
@@ -1340,7 +1339,7 @@ def interp(x, xp, fp, left=None, right=None, period=None):
>>> np.interp(2.5, xp, fp)
1.0
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
- array([ 3. , 3. , 2.5 , 0.56, 0. ])
+ array([3. , 3. , 2.5 , 0.56, 0. ])
>>> UNDEF = -99.0
>>> np.interp(3.14, xp, fp, right=UNDEF)
-99.0
@@ -1364,7 +1363,7 @@ def interp(x, xp, fp, left=None, right=None, period=None):
>>> xp = [190, -190, 350, -350]
>>> fp = [5, 10, 3, 4]
>>> np.interp(x, xp, fp, period=360)
- array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75])
+ array([7.5 , 5. , 8.75, 6.25, 3. , 3.25, 3.5 , 3.75])
Complex interpolation:
@@ -1372,7 +1371,7 @@ def interp(x, xp, fp, left=None, right=None, period=None):
>>> xp = [2,3,5]
>>> fp = [1.0j, 0, 2+3j]
>>> np.interp(x, xp, fp)
- array([ 0.+1.j , 1.+1.5j])
+ array([0.+1.j , 1.+1.5j])
"""
@@ -1445,7 +1444,7 @@ def angle(z, deg=False):
Examples
--------
>>> np.angle([1.0, 1.0j, 1+1j]) # in radians
- array([ 0. , 1.57079633, 0.78539816])
+ array([ 0. , 1.57079633, 0.78539816]) # may vary
>>> np.angle(1+1j, deg=True) # in degrees
45.0
@@ -1505,9 +1504,9 @@ def unwrap(p, discont=pi, axis=-1):
>>> phase = np.linspace(0, np.pi, num=5)
>>> phase[3:] += np.pi
>>> phase
- array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531])
+ array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) # may vary
>>> np.unwrap(phase)
- array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ])
+ array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) # may vary
"""
p = asarray(p)
@@ -1547,10 +1546,10 @@ def sort_complex(a):
Examples
--------
>>> np.sort_complex([5, 3, 6, 2, 1])
- array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])
+ array([1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])
>>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
- array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])
+ array([1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j])
"""
b = array(a, copy=True)
@@ -1596,7 +1595,7 @@ def trim_zeros(filt, trim='fb'):
array([1, 2, 3, 0, 2, 1])
>>> np.trim_zeros(a, 'b')
- array([0, 0, 0, 1, 2, 3, 0, 2, 1])
+ array([0, 0, 0, ..., 0, 2, 1])
The input data type is preserved, list/tuple in means list/tuple out.
@@ -1958,11 +1957,11 @@ class vectorize(object):
>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
- <type 'numpy.int32'>
+ <class 'numpy.int64'>
>>> vfunc = np.vectorize(myfunc, otypes=[float])
>>> out = vfunc([1, 2, 3, 4], 2)
>>> type(out[0])
- <type 'numpy.float64'>
+ <class 'numpy.float64'>
The `excluded` argument can be used to prevent vectorizing over certain
arguments. This can be useful for array-like arguments of a fixed length
@@ -1990,18 +1989,18 @@ class vectorize(object):
>>> import scipy.stats
>>> pearsonr = np.vectorize(scipy.stats.pearsonr,
- ... signature='(n),(n)->(),()')
- >>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]])
+ ... signature='(n),(n)->(),()')
+ >>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]])
(array([ 1., -1.]), array([ 0., 0.]))
Or for a vectorized convolution:
>>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)')
>>> convolve(np.eye(4), [1, 2, 1])
- array([[ 1., 2., 1., 0., 0., 0.],
- [ 0., 1., 2., 1., 0., 0.],
- [ 0., 0., 1., 2., 1., 0.],
- [ 0., 0., 0., 1., 2., 1.]])
+ array([[1., 2., 1., 0., 0., 0.],
+ [0., 1., 2., 1., 0., 0.],
+ [0., 0., 1., 2., 1., 0.],
+ [0., 0., 0., 1., 2., 1.]])
See Also
--------
@@ -2311,10 +2310,14 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
array `m` and let ``f = fweights`` and ``a = aweights`` for brevity. The
steps to compute the weighted covariance are as follows::
+ >>> m = np.arange(10, dtype=np.float64)
+ >>> f = np.arange(10) * 2
+ >>> a = np.arange(10) ** 2.
+ >>> ddof = 9 # N - 1
>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
- >>> m -= np.sum(m * w, axis=1, keepdims=True) / v1
+ >>> m -= np.sum(m * w, axis=None, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)
Note that when ``a == 1``, the normalization factor
@@ -2346,14 +2349,14 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
>>> x = [-2.1, -1, 4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.stack((x, y), axis=0)
- >>> print(np.cov(X))
- [[ 11.71 -4.286 ]
- [ -4.286 2.14413333]]
- >>> print(np.cov(x, y))
- [[ 11.71 -4.286 ]
- [ -4.286 2.14413333]]
- >>> print(np.cov(x))
- 11.71
+ >>> np.cov(X)
+ array([[11.71 , -4.286 ], # may vary
+ [-4.286 , 2.144133]])
+ >>> np.cov(x, y)
+ array([[11.71 , -4.286 ], # may vary
+ [-4.286 , 2.144133]])
+ >>> np.cov(x)
+ array(11.71)
"""
# Check inputs
@@ -2590,12 +2593,14 @@ def blackman(M):
Examples
--------
+ >>> import matplotlib
+ >>> matplotlib.use('agg')
+ >>> import matplotlib.pyplot as plt
>>> np.blackman(12)
- array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01,
- 4.14397981e-01, 7.36045180e-01, 9.67046769e-01,
- 9.67046769e-01, 7.36045180e-01, 4.14397981e-01,
- 1.59903635e-01, 3.26064346e-02, -1.38777878e-17])
-
+ array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01, # may vary
+ 4.14397981e-01, 7.36045180e-01, 9.67046769e-01,
+ 9.67046769e-01, 7.36045180e-01, 4.14397981e-01,
+ 1.59903635e-01, 3.26064346e-02, -1.38777878e-17])
Plot the window and the frequency response:
@@ -2604,15 +2609,15 @@ def blackman(M):
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Blackman window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Blackman window')
>>> plt.ylabel("Amplitude")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("Sample")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'Sample')
>>> plt.show()
>>> plt.figure()
- <matplotlib.figure.Figure object at 0x...>
+ <Figure size 640x480 with 0 Axes>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
@@ -2621,13 +2626,12 @@ def blackman(M):
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Blackman window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Frequency response of Blackman window')
>>> plt.ylabel("Magnitude [dB]")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Magnitude [dB]')
>>> plt.xlabel("Normalized frequency [cycles per sample]")
- <matplotlib.text.Text object at 0x...>
- >>> plt.axis('tight')
- (-0.5, 0.5, -100.0, ...)
+ Text(0.5, 0, 'Normalized frequency [cycles per sample]')
+ >>> _ = plt.axis('tight')
>>> plt.show()
"""
@@ -2699,8 +2703,9 @@ def bartlett(M):
Examples
--------
+ >>> import matplotlib.pyplot as plt
>>> np.bartlett(12)
- array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273,
+ array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, # may vary
0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636,
0.18181818, 0. ])
@@ -2711,15 +2716,15 @@ def bartlett(M):
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Bartlett window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Bartlett window')
>>> plt.ylabel("Amplitude")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("Sample")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'Sample')
>>> plt.show()
>>> plt.figure()
- <matplotlib.figure.Figure object at 0x...>
+ <Figure size 640x480 with 0 Axes>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
@@ -2728,13 +2733,12 @@ def bartlett(M):
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Bartlett window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Frequency response of Bartlett window')
>>> plt.ylabel("Magnitude [dB]")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Magnitude [dB]')
>>> plt.xlabel("Normalized frequency [cycles per sample]")
- <matplotlib.text.Text object at 0x...>
- >>> plt.axis('tight')
- (-0.5, 0.5, -100.0, ...)
+ Text(0.5, 0, 'Normalized frequency [cycles per sample]')
+ >>> _ = plt.axis('tight')
>>> plt.show()
"""
@@ -2801,26 +2805,30 @@ def hanning(M):
Examples
--------
>>> np.hanning(12)
- array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037,
- 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249,
- 0.07937323, 0. ])
+ array([0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037,
+ 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249,
+ 0.07937323, 0. ])
Plot the window and its frequency response:
+ >>> import matplotlib
+ >>> import matplotlib.pyplot
+ >>> matplotlib.pyplot.switch_backend('agg')
+ >>> import matplotlib.pyplot as plt
>>> from numpy.fft import fft, fftshift
>>> window = np.hanning(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hann window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Hann window')
>>> plt.ylabel("Amplitude")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("Sample")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'Sample')
>>> plt.show()
>>> plt.figure()
- <matplotlib.figure.Figure object at 0x...>
+ <Figure size 640x480 with 0 Axes>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
@@ -2829,13 +2837,13 @@ def hanning(M):
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of the Hann window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Frequency response of the Hann window')
>>> plt.ylabel("Magnitude [dB]")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Magnitude [dB]')
>>> plt.xlabel("Normalized frequency [cycles per sample]")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'Normalized frequency [cycles per sample]')
>>> plt.axis('tight')
- (-0.5, 0.5, -100.0, ...)
+ ...
>>> plt.show()
"""
@@ -2900,26 +2908,30 @@ def hamming(M):
Examples
--------
>>> np.hamming(12)
- array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594,
+ array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, # may vary
0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909,
0.15302337, 0.08 ])
Plot the window and the frequency response:
+ >>> import matplotlib
+ >>> import matplotlib.pyplot
+ >>> matplotlib.pyplot.switch_backend('agg')
+ >>> import matplotlib.pyplot as plt
>>> from numpy.fft import fft, fftshift
>>> window = np.hamming(51)
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Hamming window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Hamming window')
>>> plt.ylabel("Amplitude")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("Sample")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'Sample')
>>> plt.show()
>>> plt.figure()
- <matplotlib.figure.Figure object at 0x...>
+ <Figure size 640x480 with 0 Axes>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
@@ -2928,13 +2940,13 @@ def hamming(M):
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Hamming window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Frequency response of Hamming window')
>>> plt.ylabel("Magnitude [dB]")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Magnitude [dB]')
>>> plt.xlabel("Normalized frequency [cycles per sample]")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'Normalized frequency [cycles per sample]')
>>> plt.axis('tight')
- (-0.5, 0.5, -100.0, ...)
+ ...
>>> plt.show()
"""
@@ -3083,9 +3095,9 @@ def i0(x):
Examples
--------
>>> np.i0([0.])
- array(1.0)
+ array(1.0) # may vary
>>> np.i0([0., 1. + 2j])
- array([ 1.00000000+0.j , 0.18785373+0.64616944j])
+ array([ 1.00000000+0.j , 0.18785373+0.64616944j]) # may vary
"""
x = atleast_1d(x).copy()
@@ -3180,11 +3192,14 @@ def kaiser(M, beta):
Examples
--------
+ >>> import matplotlib
+ >>> matplotlib.use('agg')
+ >>> import matplotlib.pyplot as plt
>>> np.kaiser(12, 14)
- array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02,
- 2.29737120e-01, 5.99885316e-01, 9.45674898e-01,
- 9.45674898e-01, 5.99885316e-01, 2.29737120e-01,
- 4.65200189e-02, 3.46009194e-03, 7.72686684e-06])
+ array([7.72686684e-06, 3.46009194e-03, 4.65200189e-02, # may vary
+ 2.29737120e-01, 5.99885316e-01, 9.45674898e-01,
+ 9.45674898e-01, 5.99885316e-01, 2.29737120e-01,
+ 4.65200189e-02, 3.46009194e-03, 7.72686684e-06])
Plot the window and the frequency response:
@@ -3194,15 +3209,15 @@ def kaiser(M, beta):
>>> plt.plot(window)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Kaiser window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Kaiser window')
>>> plt.ylabel("Amplitude")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("Sample")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'Sample')
>>> plt.show()
>>> plt.figure()
- <matplotlib.figure.Figure object at 0x...>
+ <Figure size 640x480 with 0 Axes>
>>> A = fft(window, 2048) / 25.5
>>> mag = np.abs(fftshift(A))
>>> freq = np.linspace(-0.5, 0.5, len(A))
@@ -3211,13 +3226,13 @@ def kaiser(M, beta):
>>> plt.plot(freq, response)
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Frequency response of Kaiser window")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Frequency response of Kaiser window')
>>> plt.ylabel("Magnitude [dB]")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Magnitude [dB]')
>>> plt.xlabel("Normalized frequency [cycles per sample]")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'Normalized frequency [cycles per sample]')
>>> plt.axis('tight')
- (-0.5, 0.5, -100.0, ...)
+ (-0.5, 0.5, -100.0, ...) # may vary
>>> plt.show()
"""
@@ -3273,31 +3288,33 @@ def sinc(x):
Examples
--------
+ >>> import matplotlib
+ >>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 41)
>>> np.sinc(x)
- array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02,
+ array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02, # may vary
-8.90384387e-02, -5.84680802e-02, 3.89804309e-17,
- 6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
- 8.50444803e-02, -3.89804309e-17, -1.03943254e-01,
+ 6.68206631e-02, 1.16434881e-01, 1.26137788e-01,
+ 8.50444803e-02, -3.89804309e-17, -1.03943254e-01,
-1.89206682e-01, -2.16236208e-01, -1.55914881e-01,
- 3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
- 7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
- 9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
- 2.33872321e-01, 3.89804309e-17, -1.55914881e-01,
- -2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
- -3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
- 1.16434881e-01, 6.68206631e-02, 3.89804309e-17,
+ 3.89804309e-17, 2.33872321e-01, 5.04551152e-01,
+ 7.56826729e-01, 9.35489284e-01, 1.00000000e+00,
+ 9.35489284e-01, 7.56826729e-01, 5.04551152e-01,
+ 2.33872321e-01, 3.89804309e-17, -1.55914881e-01,
+ -2.16236208e-01, -1.89206682e-01, -1.03943254e-01,
+ -3.89804309e-17, 8.50444803e-02, 1.26137788e-01,
+ 1.16434881e-01, 6.68206631e-02, 3.89804309e-17,
-5.84680802e-02, -8.90384387e-02, -8.40918587e-02,
-4.92362781e-02, -3.89804309e-17])
>>> plt.plot(x, np.sinc(x))
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.title("Sinc Function")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 1.0, 'Sinc Function')
>>> plt.ylabel("Amplitude")
- <matplotlib.text.Text object at 0x...>
+ Text(0, 0.5, 'Amplitude')
>>> plt.xlabel("X")
- <matplotlib.text.Text object at 0x...>
+ Text(0.5, 0, 'X')
>>> plt.show()
It works in 2-D as well:
@@ -3469,18 +3486,18 @@ def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
- array([ 6.5, 4.5, 2.5])
+ array([6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
- array([ 7., 2.])
+ array([7., 2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
- array([ 6.5, 4.5, 2.5])
+ array([6.5, 4.5, 2.5])
>>> m
- array([ 6.5, 4.5, 2.5])
+ array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
- array([ 7., 2.])
+ array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
@@ -3647,23 +3664,23 @@ def percentile(a, q, axis=None, out=None,
>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 50, axis=0)
- array([[ 6.5, 4.5, 2.5]])
+ array([6.5, 4.5, 2.5])
>>> np.percentile(a, 50, axis=1)
- array([ 7., 2.])
+ array([7., 2.])
>>> np.percentile(a, 50, axis=1, keepdims=True)
- array([[ 7.],
- [ 2.]])
+ array([[7.],
+ [2.]])
>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=out)
- array([[ 6.5, 4.5, 2.5]])
+ array([6.5, 4.5, 2.5])
>>> m
- array([[ 6.5, 4.5, 2.5]])
+ array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
- array([ 7., 2.])
+ array([7., 2.])
>>> assert not np.all(a == b)
The different types of interpolation can be visualized graphically:
@@ -3789,21 +3806,21 @@ def quantile(a, q, axis=None, out=None,
>>> np.quantile(a, 0.5)
3.5
>>> np.quantile(a, 0.5, axis=0)
- array([[ 6.5, 4.5, 2.5]])
+ array([6.5, 4.5, 2.5])
>>> np.quantile(a, 0.5, axis=1)
- array([ 7., 2.])
+ array([7., 2.])
>>> np.quantile(a, 0.5, axis=1, keepdims=True)
- array([[ 7.],
- [ 2.]])
+ array([[7.],
+ [2.]])
>>> m = np.quantile(a, 0.5, axis=0)
>>> out = np.zeros_like(m)
>>> np.quantile(a, 0.5, axis=0, out=out)
- array([[ 6.5, 4.5, 2.5]])
+ array([6.5, 4.5, 2.5])
>>> m
- array([[ 6.5, 4.5, 2.5]])
+ array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.quantile(b, 0.5, axis=1, overwrite_input=True)
- array([ 7., 2.])
+ array([7., 2.])
>>> assert not np.all(a == b)
"""
q = np.asanyarray(q)
@@ -4032,9 +4049,9 @@ def trapz(y, x=None, dx=1.0, axis=-1):
array([[0, 1, 2],
[3, 4, 5]])
>>> np.trapz(a, axis=0)
- array([ 1.5, 2.5, 3.5])
+ array([1.5, 2.5, 3.5])
>>> np.trapz(a, axis=1)
- array([ 2., 8.])
+ array([2., 8.])
"""
y = asanyarray(y)
@@ -4152,17 +4169,17 @@ def meshgrid(*xi, **kwargs):
>>> y = np.linspace(0, 1, ny)
>>> xv, yv = np.meshgrid(x, y)
>>> xv
- array([[ 0. , 0.5, 1. ],
- [ 0. , 0.5, 1. ]])
+ array([[0. , 0.5, 1. ],
+ [0. , 0.5, 1. ]])
>>> yv
- array([[ 0., 0., 0.],
- [ 1., 1., 1.]])
+ array([[0., 0., 0.],
+ [1., 1., 1.]])
>>> xv, yv = np.meshgrid(x, y, sparse=True) # make sparse output arrays
>>> xv
- array([[ 0. , 0.5, 1. ]])
+ array([[0. , 0.5, 1. ]])
>>> yv
- array([[ 0.],
- [ 1.]])
+ array([[0.],
+ [1.]])
`meshgrid` is very useful to evaluate functions on a grid.
@@ -4245,6 +4262,7 @@ def delete(arr, obj, axis=None):
-----
Often it is preferable to use a boolean mask. For example:
+ >>> arr = np.arange(12) + 1
>>> mask = np.ones(len(arr), dtype=bool)
>>> mask[[0,2,4]] = False
>>> result = arr[mask,...]
@@ -4476,7 +4494,7 @@ def insert(arr, obj, values, axis=None):
[2, 2],
[3, 3]])
>>> np.insert(a, 1, 5)
- array([1, 5, 1, 2, 2, 3, 3])
+ array([1, 5, 1, ..., 2, 3, 3])
>>> np.insert(a, 1, 5, axis=1)
array([[1, 5, 1],
[2, 5, 2],
@@ -4496,13 +4514,13 @@ def insert(arr, obj, values, axis=None):
>>> b
array([1, 1, 2, 2, 3, 3])
>>> np.insert(b, [2, 2], [5, 6])
- array([1, 1, 5, 6, 2, 2, 3, 3])
+ array([1, 1, 5, ..., 2, 3, 3])
>>> np.insert(b, slice(2, 4), [5, 6])
- array([1, 1, 5, 2, 6, 2, 3, 3])
+ array([1, 1, 5, ..., 2, 3, 3])
>>> np.insert(b, [2, 2], [7.13, False]) # type casting
- array([1, 1, 7, 0, 2, 2, 3, 3])
+ array([1, 1, 7, ..., 2, 3, 3])
>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
@@ -4666,7 +4684,7 @@ def append(arr, values, axis=None):
Examples
--------
>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
- array([1, 2, 3, 4, 5, 6, 7, 8, 9])
+ array([1, 2, 3, ..., 7, 8, 9])
When `axis` is specified, `values` must have the correct shape.
@@ -4676,8 +4694,8 @@ def append(arr, values, axis=None):
[7, 8, 9]])
>>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
Traceback (most recent call last):
- ...
- ValueError: arrays must have same number of dimensions
+ ...
+ ValueError: all the input arrays must have same number of dimensions
"""
arr = asanyarray(arr)
diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py
index 482eabe14..7b229cc89 100644
--- a/numpy/lib/histograms.py
+++ b/numpy/lib/histograms.py
@@ -645,7 +645,7 @@ def histogram_bin_edges(a, bins=10, range=None, weights=None):
>>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto')
>>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto')
- >>> hist_0; hist1
+ >>> hist_0; hist_1
array([1, 1, 1])
array([2, 1, 1, 2])
>>> bins_0; bins_1
@@ -748,14 +748,14 @@ def histogram(a, bins=10, range=None, normed=None, weights=None,
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
- (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
+ (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))
>>> a = np.arange(5)
>>> hist, bin_edges = np.histogram(a, density=True)
>>> hist
- array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
+ array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
>>> hist.sum()
2.4999999999999996
>>> np.sum(hist * np.diff(bin_edges))
@@ -770,8 +770,9 @@ def histogram(a, bins=10, range=None, normed=None, weights=None,
>>> rng = np.random.RandomState(10) # deterministic random data
>>> a = np.hstack((rng.normal(size=1000),
... rng.normal(loc=5, scale=2, size=1000)))
- >>> plt.hist(a, bins='auto') # arguments are passed to np.histogram
+ >>> _ = plt.hist(a, bins='auto') # arguments are passed to np.histogram
>>> plt.title("Histogram with 'auto' bins")
+ Text(0.5, 1.0, "Histogram with 'auto' bins")
>>> plt.show()
"""
diff --git a/numpy/lib/index_tricks.py b/numpy/lib/index_tricks.py
index 56abe293a..64c491cfa 100644
--- a/numpy/lib/index_tricks.py
+++ b/numpy/lib/index_tricks.py
@@ -478,7 +478,7 @@ class RClass(AxisConcatenator):
Examples
--------
>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
- array([1, 2, 3, 0, 0, 4, 5, 6])
+ array([1, 2, 3, ..., 4, 5, 6])
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ])
@@ -538,7 +538,7 @@ class CClass(AxisConcatenator):
[2, 5],
[3, 6]])
>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
- array([[1, 2, 3, 0, 0, 4, 5, 6]])
+ array([[1, 2, 3, ..., 4, 5, 6]])
"""
@@ -813,7 +813,7 @@ def fill_diagonal(a, val, wrap=False):
>>> # tall matrices no wrap
>>> a = np.zeros((5, 3),int)
- >>> fill_diagonal(a, 4)
+ >>> np.fill_diagonal(a, 4)
>>> a
array([[4, 0, 0],
[0, 4, 0],
@@ -823,7 +823,7 @@ def fill_diagonal(a, val, wrap=False):
>>> # tall matrices wrap
>>> a = np.zeros((5, 3),int)
- >>> fill_diagonal(a, 4, wrap=True)
+ >>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0],
[0, 4, 0],
@@ -833,7 +833,7 @@ def fill_diagonal(a, val, wrap=False):
>>> # wide matrices
>>> a = np.zeros((3, 5),int)
- >>> fill_diagonal(a, 4, wrap=True)
+ >>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0, 0, 0],
[0, 4, 0, 0, 0],
diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py
index d73d84467..b3bf1880b 100644
--- a/numpy/lib/nanfunctions.py
+++ b/numpy/lib/nanfunctions.py
@@ -271,9 +271,9 @@ def nanmin(a, axis=None, out=None, keepdims=np._NoValue):
>>> np.nanmin(a)
1.0
>>> np.nanmin(a, axis=0)
- array([ 1., 2.])
+ array([1., 2.])
>>> np.nanmin(a, axis=1)
- array([ 1., 3.])
+ array([1., 3.])
When positive infinity and negative infinity are present:
@@ -384,9 +384,9 @@ def nanmax(a, axis=None, out=None, keepdims=np._NoValue):
>>> np.nanmax(a)
3.0
>>> np.nanmax(a, axis=0)
- array([ 3., 2.])
+ array([3., 2.])
>>> np.nanmax(a, axis=1)
- array([ 2., 3.])
+ array([2., 3.])
When positive infinity and negative infinity are present:
@@ -601,12 +601,15 @@ def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
>>> np.nansum(a)
3.0
>>> np.nansum(a, axis=0)
- array([ 2., 1.])
+ array([2., 1.])
>>> np.nansum([1, np.nan, np.inf])
inf
>>> np.nansum([1, np.nan, np.NINF])
-inf
- >>> np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
+ >>> from numpy.testing import suppress_warnings
+ >>> with suppress_warnings() as sup:
+ ... sup.filter(RuntimeWarning)
+ ... np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
nan
"""
@@ -677,7 +680,7 @@ def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
>>> np.nanprod(a)
6.0
>>> np.nanprod(a, axis=0)
- array([ 3., 2.])
+ array([3., 2.])
"""
a, mask = _replace_nan(a, 1)
@@ -738,16 +741,16 @@ def nancumsum(a, axis=None, dtype=None, out=None):
>>> np.nancumsum([1])
array([1])
>>> np.nancumsum([1, np.nan])
- array([ 1., 1.])
+ array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumsum(a)
- array([ 1., 3., 6., 6.])
+ array([1., 3., 6., 6.])
>>> np.nancumsum(a, axis=0)
- array([[ 1., 2.],
- [ 4., 2.]])
+ array([[1., 2.],
+ [4., 2.]])
>>> np.nancumsum(a, axis=1)
- array([[ 1., 3.],
- [ 3., 3.]])
+ array([[1., 3.],
+ [3., 3.]])
"""
a, mask = _replace_nan(a, 0)
@@ -805,16 +808,16 @@ def nancumprod(a, axis=None, dtype=None, out=None):
>>> np.nancumprod([1])
array([1])
>>> np.nancumprod([1, np.nan])
- array([ 1., 1.])
+ array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumprod(a)
- array([ 1., 2., 6., 6.])
+ array([1., 2., 6., 6.])
>>> np.nancumprod(a, axis=0)
- array([[ 1., 2.],
- [ 3., 2.]])
+ array([[1., 2.],
+ [3., 2.]])
>>> np.nancumprod(a, axis=1)
- array([[ 1., 2.],
- [ 3., 3.]])
+ array([[1., 2.],
+ [3., 3.]])
"""
a, mask = _replace_nan(a, 1)
@@ -895,9 +898,9 @@ def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
>>> np.nanmean(a)
2.6666666666666665
>>> np.nanmean(a, axis=0)
- array([ 2., 4.])
+ array([2., 4.])
>>> np.nanmean(a, axis=1)
- array([ 1., 3.5])
+ array([1., 3.5]) # may vary
"""
arr, mask = _replace_nan(a, 0)
@@ -1049,19 +1052,19 @@ def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValu
>>> a = np.array([[10.0, 7, 4], [3, 2, 1]])
>>> a[0, 1] = np.nan
>>> a
- array([[ 10., nan, 4.],
- [ 3., 2., 1.]])
+ array([[10., nan, 4.],
+ [ 3., 2., 1.]])
>>> np.median(a)
nan
>>> np.nanmedian(a)
3.0
>>> np.nanmedian(a, axis=0)
- array([ 6.5, 2., 2.5])
+ array([6.5, 2. , 2.5])
>>> np.median(a, axis=1)
- array([ 7., 2.])
+ array([nan, 2.])
>>> b = a.copy()
>>> np.nanmedian(b, axis=1, overwrite_input=True)
- array([ 7., 2.])
+ array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.nanmedian(b, axis=None, overwrite_input=True)
@@ -1177,27 +1180,27 @@ def nanpercentile(a, q, axis=None, out=None, overwrite_input=False,
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
- array([[ 10., nan, 4.],
- [ 3., 2., 1.]])
+ array([[10., nan, 4.],
+ [ 3., 2., 1.]])
>>> np.percentile(a, 50)
nan
>>> np.nanpercentile(a, 50)
- 3.5
+ 3.0
>>> np.nanpercentile(a, 50, axis=0)
- array([ 6.5, 2., 2.5])
+ array([6.5, 2. , 2.5])
>>> np.nanpercentile(a, 50, axis=1, keepdims=True)
- array([[ 7.],
- [ 2.]])
+ array([[7.],
+ [2.]])
>>> m = np.nanpercentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanpercentile(a, 50, axis=0, out=out)
- array([ 6.5, 2., 2.5])
+ array([6.5, 2. , 2.5])
>>> m
- array([ 6.5, 2. , 2.5])
+ array([6.5, 2. , 2.5])
>>> b = a.copy()
>>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
- array([ 7., 2.])
+ array([7., 2.])
>>> assert not np.all(a==b)
"""
@@ -1291,26 +1294,26 @@ def nanquantile(a, q, axis=None, out=None, overwrite_input=False,
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
- array([[ 10., nan, 4.],
- [ 3., 2., 1.]])
+ array([[10., nan, 4.],
+ [ 3., 2., 1.]])
>>> np.quantile(a, 0.5)
nan
>>> np.nanquantile(a, 0.5)
- 3.5
+ 3.0
>>> np.nanquantile(a, 0.5, axis=0)
- array([ 6.5, 2., 2.5])
+ array([6.5, 2. , 2.5])
>>> np.nanquantile(a, 0.5, axis=1, keepdims=True)
- array([[ 7.],
- [ 2.]])
+ array([[7.],
+ [2.]])
>>> m = np.nanquantile(a, 0.5, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanquantile(a, 0.5, axis=0, out=out)
- array([ 6.5, 2., 2.5])
+ array([6.5, 2. , 2.5])
>>> m
- array([ 6.5, 2. , 2.5])
+ array([6.5, 2. , 2.5])
>>> b = a.copy()
>>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True)
- array([ 7., 2.])
+ array([7., 2.])
>>> assert not np.all(a==b)
"""
a = np.asanyarray(a)
@@ -1465,12 +1468,12 @@ def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
Examples
--------
>>> a = np.array([[1, np.nan], [3, 4]])
- >>> np.var(a)
+ >>> np.nanvar(a)
1.5555555555555554
>>> np.nanvar(a, axis=0)
- array([ 1., 0.])
+ array([1., 0.])
>>> np.nanvar(a, axis=1)
- array([ 0., 0.25])
+ array([0., 0.25]) # may vary
"""
arr, mask = _replace_nan(a, 0)
@@ -1619,9 +1622,9 @@ def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
>>> np.nanstd(a)
1.247219128924647
>>> np.nanstd(a, axis=0)
- array([ 1., 0.])
+ array([1., 0.])
>>> np.nanstd(a, axis=1)
- array([ 0., 0.5])
+ array([0., 0.5]) # may vary
"""
var = nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py
index db6a8e5eb..e98c33e29 100644
--- a/numpy/lib/npyio.py
+++ b/numpy/lib/npyio.py
@@ -168,13 +168,13 @@ class NpzFile(Mapping):
>>> x = np.arange(10)
>>> y = np.sin(x)
>>> np.savez(outfile, x=x, y=y)
- >>> outfile.seek(0)
+ >>> _ = outfile.seek(0)
>>> npz = np.load(outfile)
>>> isinstance(npz, np.lib.io.NpzFile)
True
- >>> npz.files
- ['y', 'x']
+ >>> sorted(npz.files)
+ ['x', 'y']
>>> npz['x'] # getitem access
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> npz.f.x # attribute lookup
@@ -502,7 +502,7 @@ def save(file, arr, allow_pickle=True, fix_imports=True):
>>> x = np.arange(10)
>>> np.save(outfile, x)
- >>> outfile.seek(0) # Only needed here to simulate closing & reopening file
+ >>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file
>>> np.load(outfile)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
@@ -597,10 +597,10 @@ def savez(file, *args, **kwds):
Using `savez` with \\*args, the arrays are saved with default names.
>>> np.savez(outfile, x, y)
- >>> outfile.seek(0) # Only needed here to simulate closing & reopening file
+ >>> _ = outfile.seek(0) # Only needed here to simulate closing & reopening file
>>> npzfile = np.load(outfile)
>>> npzfile.files
- ['arr_1', 'arr_0']
+ ['arr_0', 'arr_1']
>>> npzfile['arr_0']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
@@ -608,10 +608,10 @@ def savez(file, *args, **kwds):
>>> outfile = TemporaryFile()
>>> np.savez(outfile, x=x, y=y)
- >>> outfile.seek(0)
+ >>> _ = outfile.seek(0)
>>> npzfile = np.load(outfile)
- >>> npzfile.files
- ['y', 'x']
+ >>> sorted(npzfile.files)
+ ['x', 'y']
>>> npzfile['x']
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
@@ -891,21 +891,21 @@ def loadtxt(fname, dtype=float, comments='#', delimiter=None,
>>> from io import StringIO # StringIO behaves like a file object
>>> c = StringIO(u"0 1\\n2 3")
>>> np.loadtxt(c)
- array([[ 0., 1.],
- [ 2., 3.]])
+ array([[0., 1.],
+ [2., 3.]])
>>> d = StringIO(u"M 21 72\\nF 35 58")
>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
... 'formats': ('S1', 'i4', 'f4')})
- array([('M', 21, 72.0), ('F', 35, 58.0)],
- dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')])
+ array([(b'M', 21, 72.), (b'F', 35, 58.)],
+ dtype=[('gender', 'S1'), ('age', '<i4'), ('weight', '<f4')])
>>> c = StringIO(u"1,0,2\\n3,0,4")
>>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True)
>>> x
- array([ 1., 3.])
+ array([1., 3.])
>>> y
- array([ 2., 4.])
+ array([2., 4.])
"""
# Type conversions for Py3 convenience
@@ -1481,17 +1481,17 @@ def fromregex(file, regexp, dtype, encoding=None):
Examples
--------
>>> f = open('test.dat', 'w')
- >>> f.write("1312 foo\\n1534 bar\\n444 qux")
+ >>> _ = f.write("1312 foo\\n1534 bar\\n444 qux")
>>> f.close()
>>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything]
>>> output = np.fromregex('test.dat', regexp,
... [('num', np.int64), ('key', 'S3')])
>>> output
- array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],
- dtype=[('num', '<i8'), ('key', '|S3')])
+ array([(1312, b'foo'), (1534, b'bar'), ( 444, b'qux')],
+ dtype=[('num', '<i8'), ('key', 'S3')])
>>> output['num']
- array([1312, 1534, 444], dtype=int64)
+ array([1312, 1534, 444])
"""
own_fh = False
@@ -1674,26 +1674,26 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
>>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'),
... ('mystring','S5')], delimiter=",")
>>> data
- array((1, 1.3, 'abcde'),
- dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])
+ array((1, 1.3, b'abcde'),
+ dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
Using dtype = None
- >>> s.seek(0) # needed for StringIO example only
+ >>> _ = s.seek(0) # needed for StringIO example only
>>> data = np.genfromtxt(s, dtype=None,
... names = ['myint','myfloat','mystring'], delimiter=",")
>>> data
- array((1, 1.3, 'abcde'),
- dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])
+ array((1, 1.3, b'abcde'),
+ dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
Specifying dtype and names
- >>> s.seek(0)
+ >>> _ = s.seek(0)
>>> data = np.genfromtxt(s, dtype="i8,f8,S5",
... names=['myint','myfloat','mystring'], delimiter=",")
>>> data
- array((1, 1.3, 'abcde'),
- dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')])
+ array((1, 1.3, b'abcde'),
+ dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', 'S5')])
An example with fixed-width columns
@@ -1701,8 +1701,8 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
>>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'],
... delimiter=[1,3,5])
>>> data
- array((1, 1.3, 'abcde'),
- dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')])
+ array((1, 1.3, b'abcde'),
+ dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', 'S5')])
"""
if max_rows is not None:
diff --git a/numpy/lib/polynomial.py b/numpy/lib/polynomial.py
index e3defdca2..7904092ed 100644
--- a/numpy/lib/polynomial.py
+++ b/numpy/lib/polynomial.py
@@ -110,7 +110,7 @@ def poly(seq_of_zeros):
Given a sequence of a polynomial's zeros:
>>> np.poly((0, 0, 0)) # Multiple root example
- array([1, 0, 0, 0])
+ array([1., 0., 0., 0.])
The line above represents z**3 + 0*z**2 + 0*z + 0.
@@ -119,14 +119,14 @@ def poly(seq_of_zeros):
The line above represents z**3 - z/4
- >>> np.poly((np.random.random(1.)[0], 0, np.random.random(1.)[0]))
- array([ 1. , -0.77086955, 0.08618131, 0. ]) #random
+ >>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0]))
+ array([ 1. , -0.77086955, 0.08618131, 0. ]) # random
Given a square array object:
>>> P = np.array([[0, 1./3], [-1./2, 0]])
>>> np.poly(P)
- array([ 1. , 0. , 0.16666667])
+ array([1. , 0. , 0.16666667])
Note how in all cases the leading coefficient is always 1.
@@ -295,7 +295,7 @@ def polyint(p, m=1, k=None):
>>> p = np.poly1d([1,1,1])
>>> P = np.polyint(p)
>>> P
- poly1d([ 0.33333333, 0.5 , 1. , 0. ])
+ poly1d([ 0.33333333, 0.5 , 1. , 0. ]) # may vary
>>> np.polyder(P) == p
True
@@ -310,7 +310,7 @@ def polyint(p, m=1, k=None):
0.0
>>> P = np.polyint(p, 3, k=[6,5,3])
>>> P
- poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ])
+ poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) # may vary
Note that 3 = 6 / 2!, and that the constants are given in the order of
integrations. Constant of the highest-order polynomial term comes first:
@@ -404,7 +404,7 @@ def polyder(p, m=1):
>>> np.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
- poly1d([ 0.])
+ poly1d([0.])
"""
m = int(m)
@@ -552,28 +552,29 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
- array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254])
+ array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary
It is convenient to use `poly1d` objects for dealing with polynomials:
>>> p = np.poly1d(z)
>>> p(0.5)
- 0.6143849206349179
+ 0.6143849206349179 # may vary
>>> p(3.5)
- -0.34732142857143039
+ -0.34732142857143039 # may vary
>>> p(10)
- 22.579365079365115
+ 22.579365079365115 # may vary
High-order polynomials may oscillate wildly:
>>> p30 = np.poly1d(np.polyfit(x, y, 30))
- /... RankWarning: Polyfit may be poorly conditioned...
+ ...
+ >>> # RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
- -0.80000000000000204
+ -0.80000000000000204 # may vary
>>> p30(5)
- -0.99999999999999445
+ -0.99999999999999445 # may vary
>>> p30(4.5)
- -0.10547061179440398
+ -0.10547061179440398 # may vary
Illustration:
@@ -714,11 +715,11 @@ def polyval(p, x):
>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
76
>>> np.polyval([3,0,1], np.poly1d(5))
- poly1d([ 76.])
+ poly1d([76.])
>>> np.polyval(np.poly1d([3,0,1]), 5)
76
>>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
- poly1d([ 76.])
+ poly1d([76.])
"""
p = NX.asarray(p)
@@ -951,7 +952,7 @@ def polydiv(u, v):
>>> x = np.array([3.0, 5.0, 2.0])
>>> y = np.array([2.0, 1.0])
>>> np.polydiv(x, y)
- (array([ 1.5 , 1.75]), array([ 0.25]))
+ (array([1.5 , 1.75]), array([0.25]))
"""
truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d))
@@ -1046,7 +1047,7 @@ class poly1d(object):
>>> p.r
array([-1.+1.41421356j, -1.-1.41421356j])
>>> p(p.r)
- array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j])
+ array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary
These numbers in the previous line represent (0, 0) to machine precision
@@ -1073,7 +1074,7 @@ class poly1d(object):
poly1d([ 1, 4, 10, 12, 9])
>>> (p**3 + 4) / p
- (poly1d([ 1., 4., 10., 12., 9.]), poly1d([ 4.]))
+ (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.]))
``asarray(p)`` gives the coefficient array, so polynomials can be
used in all functions that accept arrays:
@@ -1095,7 +1096,7 @@ class poly1d(object):
Construct a polynomial from its roots:
>>> np.poly1d([1, 2], True)
- poly1d([ 1, -3, 2])
+ poly1d([ 1., -3., 2.])
This is the same polynomial as obtained by:
diff --git a/numpy/lib/recfunctions.py b/numpy/lib/recfunctions.py
index fcc0d9a7a..5ff35f0bb 100644
--- a/numpy/lib/recfunctions.py
+++ b/numpy/lib/recfunctions.py
@@ -57,11 +57,10 @@ def recursive_fill_fields(input, output):
Examples
--------
>>> from numpy.lib import recfunctions as rfn
- >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)])
+ >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)])
>>> b = np.zeros((3,), dtype=a.dtype)
>>> rfn.recursive_fill_fields(a, b)
- array([(1, 10.0), (2, 20.0), (0, 0.0)],
- dtype=[('A', '<i4'), ('B', '<f8')])
+ array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')])
"""
newdtype = output.dtype
@@ -89,11 +88,11 @@ def get_fieldspec(dtype):
Examples
--------
- >>> dt = np.dtype([(('a', 'A'), int), ('b', float, 3)])
+ >>> dt = np.dtype([(('a', 'A'), np.int64), ('b', np.double, 3)])
>>> dt.descr
- [(('a', 'A'), '<i4'), ('b', '<f8', (3,))]
+ [(('a', 'A'), '<i8'), ('b', '<f8', (3,))]
>>> get_fieldspec(dt)
- [(('a', 'A'), dtype('int32')), ('b', dtype(('<f8', (3,))))]
+ [(('a', 'A'), dtype('int64')), ('b', dtype(('<f8', (3,))))]
"""
if dtype.names is None:
@@ -120,10 +119,15 @@ def get_names(adtype):
Examples
--------
>>> from numpy.lib import recfunctions as rfn
- >>> rfn.get_names(np.empty((1,), dtype=int)) is None
- True
+ >>> rfn.get_names(np.empty((1,), dtype=int))
+ Traceback (most recent call last):
+ ...
+ AttributeError: 'numpy.ndarray' object has no attribute 'names'
+
>>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)]))
- ('A', 'B')
+ Traceback (most recent call last):
+ ...
+ AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
>>> rfn.get_names(adtype)
('a', ('b', ('ba', 'bb')))
@@ -153,9 +157,13 @@ def get_names_flat(adtype):
--------
>>> from numpy.lib import recfunctions as rfn
>>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None
- True
+ Traceback (most recent call last):
+ ...
+ AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)]))
- ('A', 'B')
+ Traceback (most recent call last):
+ ...
+ AttributeError: 'numpy.ndarray' object has no attribute 'names'
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
>>> rfn.get_names_flat(adtype)
('a', 'b', 'ba', 'bb')
@@ -403,20 +411,18 @@ def merge_arrays(seqarrays, fill_value=-1, flatten=False,
--------
>>> from numpy.lib import recfunctions as rfn
>>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])))
- masked_array(data = [(1, 10.0) (2, 20.0) (--, 30.0)],
- mask = [(False, False) (False, False) (True, False)],
- fill_value = (999999, 1e+20),
- dtype = [('f0', '<i4'), ('f1', '<f8')])
-
- >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])),
- ... usemask=False)
- array([(1, 10.0), (2, 20.0), (-1, 30.0)],
- dtype=[('f0', '<i4'), ('f1', '<f8')])
- >>> rfn.merge_arrays((np.array([1, 2]).view([('a', int)]),
+ array([( 1, 10.), ( 2, 20.), (-1, 30.)],
+ dtype=[('f0', '<i8'), ('f1', '<f8')])
+
+ >>> rfn.merge_arrays((np.array([1, 2], dtype=np.int64),
+ ... np.array([10., 20., 30.])), usemask=False)
+ array([(1, 10.0), (2, 20.0), (-1, 30.0)],
+ dtype=[('f0', '<i8'), ('f1', '<f8')])
+ >>> rfn.merge_arrays((np.array([1, 2]).view([('a', np.int64)]),
... np.array([10., 20., 30.])),
... usemask=False, asrecarray=True)
- rec.array([(1, 10.0), (2, 20.0), (-1, 30.0)],
- dtype=[('a', '<i4'), ('f1', '<f8')])
+ rec.array([( 1, 10.), ( 2, 20.), (-1, 30.)],
+ dtype=[('a', '<i8'), ('f1', '<f8')])
Notes
-----
@@ -547,16 +553,14 @@ def drop_fields(base, drop_names, usemask=True, asrecarray=False):
--------
>>> from numpy.lib import recfunctions as rfn
>>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
- ... dtype=[('a', int), ('b', [('ba', float), ('bb', int)])])
+ ... dtype=[('a', np.int64), ('b', [('ba', np.double), ('bb', np.int64)])])
>>> rfn.drop_fields(a, 'a')
- array([((2.0, 3),), ((5.0, 6),)],
- dtype=[('b', [('ba', '<f8'), ('bb', '<i4')])])
+ array([((2., 3),), ((5., 6),)],
+ dtype=[('b', [('ba', '<f8'), ('bb', '<i8')])])
>>> rfn.drop_fields(a, 'ba')
- array([(1, (3,)), (4, (6,))],
- dtype=[('a', '<i4'), ('b', [('bb', '<i4')])])
+ array([(1, (3,)), (4, (6,))], dtype=[('a', '<i8'), ('b', [('bb', '<i8')])])
>>> rfn.drop_fields(a, ['ba', 'bb'])
- array([(1,), (4,)],
- dtype=[('a', '<i4')])
+ array([(1,), (4,)], dtype=[('a', '<i8')])
"""
if _is_string_like(drop_names):
drop_names = [drop_names]
@@ -648,8 +652,8 @@ def rename_fields(base, namemapper):
>>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])])
>>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'})
- array([(1, (2.0, [3.0, 30.0])), (4, (5.0, [6.0, 60.0]))],
- dtype=[('A', '<i4'), ('b', [('ba', '<f8'), ('BB', '<f8', 2)])])
+ array([(1, (2., [ 3., 30.])), (4, (5., [ 6., 60.]))],
+ dtype=[('A', '<i8'), ('b', [('ba', '<f8'), ('BB', '<f8', (2,))])])
"""
def _recursive_rename_fields(ndtype, namemapper):
@@ -834,18 +838,18 @@ def repack_fields(a, align=False, recurse=False):
... print("offsets:", [d.fields[name][1] for name in d.names])
... print("itemsize:", d.itemsize)
...
- >>> dt = np.dtype('u1,i4,f4', align=True)
+ >>> dt = np.dtype('u1,<i4,<f4', align=True)
>>> dt
- dtype({'names':['f0','f1','f2'], 'formats':['u1','<i4','<f8'], 'offsets':[0,4,8], 'itemsize':16}, align=True)
+ dtype({'names':['f0','f1','f2'], 'formats':['u1','<i8','<f8'], 'offsets':[0,8,16], 'itemsize':24}, align=True)
>>> print_offsets(dt)
- offsets: [0, 4, 8]
- itemsize: 16
+ offsets: [0, 8, 16]
+ itemsize: 24
>>> packed_dt = repack_fields(dt)
>>> packed_dt
- dtype([('f0', 'u1'), ('f1', '<i4'), ('f2', '<f8')])
+ dtype([('f0', 'u1'), ('f1', '<i8'), ('f2', '<f8')])
>>> print_offsets(packed_dt)
- offsets: [0, 1, 5]
- itemsize: 13
+ offsets: [0, 1, 9]
+ itemsize: 17
"""
if not isinstance(a, np.dtype):
@@ -1244,15 +1248,16 @@ def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False,
True
>>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)])
>>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
- ... dtype=[('A', '|S3'), ('B', float), ('C', float)])
+ ... dtype=[('A', '|S3'), ('B', np.double), ('C', np.double)])
>>> test = rfn.stack_arrays((z,zz))
>>> test
- masked_array(data = [('A', 1.0, --) ('B', 2.0, --) ('a', 10.0, 100.0) ('b', 20.0, 200.0)
- ('c', 30.0, 300.0)],
- mask = [(False, False, True) (False, False, True) (False, False, False)
- (False, False, False) (False, False, False)],
- fill_value = ('N/A', 1e+20, 1e+20),
- dtype = [('A', '|S3'), ('B', '<f8'), ('C', '<f8')])
+ masked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0),
+ (b'b', 20.0, 200.0), (b'c', 30.0, 300.0)],
+ mask=[(False, False, True), (False, False, True),
+ (False, False, False), (False, False, False),
+ (False, False, False)],
+ fill_value=(b'N/A', 1.e+20, 1.e+20),
+ dtype=[('A', 'S3'), ('B', '<f8'), ('C', '<f8')])
"""
if isinstance(arrays, ndarray):
@@ -1331,7 +1336,10 @@ def find_duplicates(a, key=None, ignoremask=True, return_index=False):
>>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3],
... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
>>> rfn.find_duplicates(a, ignoremask=True, return_index=True)
- ... # XXX: judging by the output, the ignoremask flag has no effect
+ (masked_array(data=[(1,), (1,), (2,), (2,)],
+ mask=[(False,), (False,), (False,), (False,)],
+ fill_value=(999999,),
+ dtype=[('a', '<i8')]), array([0, 1, 3, 4]))
"""
a = np.asanyarray(a).ravel()
# Get a dictionary of fields
diff --git a/numpy/lib/scimath.py b/numpy/lib/scimath.py
index 9ca006841..5ac790ce9 100644
--- a/numpy/lib/scimath.py
+++ b/numpy/lib/scimath.py
@@ -59,7 +59,7 @@ def _tocomplex(arr):
>>> a = np.array([1,2,3],np.short)
>>> ac = np.lib.scimath._tocomplex(a); ac
- array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
+ array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> ac.dtype
dtype('complex64')
@@ -70,7 +70,7 @@ def _tocomplex(arr):
>>> b = np.array([1,2,3],np.double)
>>> bc = np.lib.scimath._tocomplex(b); bc
- array([ 1.+0.j, 2.+0.j, 3.+0.j])
+ array([1.+0.j, 2.+0.j, 3.+0.j])
>>> bc.dtype
dtype('complex128')
@@ -81,13 +81,13 @@ def _tocomplex(arr):
>>> c = np.array([1,2,3],np.csingle)
>>> cc = np.lib.scimath._tocomplex(c); cc
- array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
+ array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
>>> c *= 2; c
- array([ 2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64)
+ array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64)
>>> cc
- array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
+ array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64)
"""
if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte,
nt.ushort, nt.csingle)):
@@ -170,7 +170,7 @@ def _fix_real_abs_gt_1(x):
array([0, 1])
>>> np.lib.scimath._fix_real_abs_gt_1([0,2])
- array([ 0.+0.j, 2.+0.j])
+ array([0.+0.j, 2.+0.j])
"""
x = asarray(x)
if any(isreal(x) & (abs(x) > 1)):
@@ -212,14 +212,14 @@ def sqrt(x):
>>> np.lib.scimath.sqrt(1)
1.0
>>> np.lib.scimath.sqrt([1, 4])
- array([ 1., 2.])
+ array([1., 2.])
But it automatically handles negative inputs:
>>> np.lib.scimath.sqrt(-1)
- (0.0+1.0j)
+ 1j
>>> np.lib.scimath.sqrt([-1,4])
- array([ 0.+1.j, 2.+0.j])
+ array([0.+1.j, 2.+0.j])
"""
x = _fix_real_lt_zero(x)
@@ -317,7 +317,7 @@ def log10(x):
1.0
>>> np.emath.log10([-10**1, -10**2, 10**2])
- array([ 1.+1.3644j, 2.+1.3644j, 2.+0.j ])
+ array([1.+1.3644j, 2.+1.3644j, 2.+0.j ])
"""
x = _fix_real_lt_zero(x)
@@ -354,9 +354,9 @@ def logn(n, x):
>>> np.set_printoptions(precision=4)
>>> np.lib.scimath.logn(2, [4, 8])
- array([ 2., 3.])
+ array([2., 3.])
>>> np.lib.scimath.logn(2, [-4, -8, 8])
- array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ])
+ array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
x = _fix_real_lt_zero(x)
@@ -405,7 +405,7 @@ def log2(x):
>>> np.emath.log2(8)
3.0
>>> np.emath.log2([-4, -8, 8])
- array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ])
+ array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
"""
x = _fix_real_lt_zero(x)
@@ -451,9 +451,9 @@ def power(x, p):
>>> np.lib.scimath.power([2, 4], 2)
array([ 4, 16])
>>> np.lib.scimath.power([2, 4], -2)
- array([ 0.25 , 0.0625])
+ array([0.25 , 0.0625])
>>> np.lib.scimath.power([-2, 4], 2)
- array([ 4.+0.j, 16.+0.j])
+ array([ 4.-0.j, 16.+0.j])
"""
x = _fix_real_lt_zero(x)
@@ -499,7 +499,7 @@ def arccos(x):
0.0
>>> np.emath.arccos([1,2])
- array([ 0.-0.j , 0.+1.317j])
+ array([0.-0.j , 0.-1.317j])
"""
x = _fix_real_abs_gt_1(x)
@@ -545,7 +545,7 @@ def arcsin(x):
0.0
>>> np.emath.arcsin([0,1])
- array([ 0. , 1.5708])
+ array([0. , 1.5708])
"""
x = _fix_real_abs_gt_1(x)
@@ -589,11 +589,14 @@ def arctanh(x):
--------
>>> np.set_printoptions(precision=4)
- >>> np.emath.arctanh(np.eye(2))
- array([[ Inf, 0.],
- [ 0., Inf]])
+ >>> from numpy.testing import suppress_warnings
+ >>> with suppress_warnings() as sup:
+ ... sup.filter(RuntimeWarning)
+ ... np.emath.arctanh(np.eye(2))
+ array([[inf, 0.],
+ [ 0., inf]])
>>> np.emath.arctanh([1j])
- array([ 0.+0.7854j])
+ array([0.+0.7854j])
"""
x = _fix_real_abs_gt_1(x)
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py
index f56c4f4db..e088a6c4a 100644
--- a/numpy/lib/shape_base.py
+++ b/numpy/lib/shape_base.py
@@ -129,7 +129,7 @@ def take_along_axis(arr, indices, axis):
[40, 50, 60]])
>>> ai = np.argsort(a, axis=1); ai
array([[0, 2, 1],
- [1, 2, 0]], dtype=int64)
+ [1, 2, 0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 20, 30],
[40, 50, 60]])
@@ -142,7 +142,7 @@ def take_along_axis(arr, indices, axis):
>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai
array([[1],
- [0], dtype=int64)
+ [0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[30],
[60]])
@@ -152,10 +152,10 @@ def take_along_axis(arr, indices, axis):
>>> ai_min = np.expand_dims(np.argmin(a, axis=1), axis=1)
>>> ai_max = np.expand_dims(np.argmax(a, axis=1), axis=1)
- >>> ai = np.concatenate([ai_min, ai_max], axis=axis)
- >> ai
+ >>> ai = np.concatenate([ai_min, ai_max], axis=1)
+ >>> ai
array([[0, 1],
- [1, 0]], dtype=int64)
+ [1, 0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 30],
[40, 60]])
@@ -243,7 +243,7 @@ def put_along_axis(arr, indices, values, axis):
>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai
array([[1],
- [0]], dtype=int64)
+ [0]])
>>> np.put_along_axis(a, ai, 99, axis=1)
>>> a
array([[10, 99, 20],
@@ -330,9 +330,9 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs):
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
- array([ 4., 5., 6.])
+ array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
- array([ 2., 5., 8.])
+ array([2., 5., 8.])
For a function that returns a 1D array, the number of dimensions in
`outarr` is the same as `arr`.
@@ -732,11 +732,11 @@ def array_split(ary, indices_or_sections, axis=0):
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
- [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])]
+ [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
>>> x = np.arange(7.0)
>>> np.array_split(x, 3)
- [array([ 0., 1., 2.]), array([ 3., 4.]), array([ 5., 6.])]
+ [array([0., 1., 2.]), array([3., 4.]), array([5., 6.])]
"""
try:
@@ -828,14 +828,14 @@ def split(ary, indices_or_sections, axis=0):
--------
>>> x = np.arange(9.0)
>>> np.split(x, 3)
- [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])]
+ [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
- [array([ 0., 1., 2.]),
- array([ 3., 4.]),
- array([ 5.]),
- array([ 6., 7.]),
+ [array([0., 1., 2.]),
+ array([3., 4.]),
+ array([5.]),
+ array([6., 7.]),
array([], dtype=float64)]
"""
@@ -872,43 +872,43 @@ def hsplit(ary, indices_or_sections):
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
- array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]])
+ array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])
>>> np.hsplit(x, 2)
[array([[ 0., 1.],
[ 4., 5.],
[ 8., 9.],
- [ 12., 13.]]),
+ [12., 13.]]),
array([[ 2., 3.],
[ 6., 7.],
- [ 10., 11.],
- [ 14., 15.]])]
+ [10., 11.],
+ [14., 15.]])]
>>> np.hsplit(x, np.array([3, 6]))
- [array([[ 0., 1., 2.],
- [ 4., 5., 6.],
- [ 8., 9., 10.],
- [ 12., 13., 14.]]),
- array([[ 3.],
- [ 7.],
- [ 11.],
- [ 15.]]),
- array([], dtype=float64)]
+ [array([[ 0., 1., 2.],
+ [ 4., 5., 6.],
+ [ 8., 9., 10.],
+ [12., 13., 14.]]),
+ array([[ 3.],
+ [ 7.],
+ [11.],
+ [15.]]),
+ array([], shape=(4, 0), dtype=float64)]
With a higher dimensional array the split is still along the second axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
- array([[[ 0., 1.],
- [ 2., 3.]],
- [[ 4., 5.],
- [ 6., 7.]]])
+ array([[[0., 1.],
+ [2., 3.]],
+ [[4., 5.],
+ [6., 7.]]])
>>> np.hsplit(x, 2)
- [array([[[ 0., 1.]],
- [[ 4., 5.]]]),
- array([[[ 2., 3.]],
- [[ 6., 7.]]])]
+ [array([[[0., 1.]],
+ [[4., 5.]]]),
+ array([[[2., 3.]],
+ [[6., 7.]]])]
"""
if _nx.ndim(ary) == 0:
@@ -936,35 +936,31 @@ def vsplit(ary, indices_or_sections):
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
- array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]])
+ array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])
>>> np.vsplit(x, 2)
- [array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.]]),
- array([[ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]])]
+ [array([[0., 1., 2., 3.],
+ [4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
- [array([[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.],
- [ 8., 9., 10., 11.]]),
- array([[ 12., 13., 14., 15.]]),
- array([], dtype=float64)]
+ [array([[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.],
+ [ 8., 9., 10., 11.]]), array([[12., 13., 14., 15.]]), array([], shape=(0, 4), dtype=float64)]
With a higher dimensional array the split is still along the first axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
- array([[[ 0., 1.],
- [ 2., 3.]],
- [[ 4., 5.],
- [ 6., 7.]]])
+ array([[[0., 1.],
+ [2., 3.]],
+ [[4., 5.],
+ [6., 7.]]])
>>> np.vsplit(x, 2)
- [array([[[ 0., 1.],
- [ 2., 3.]]]),
- array([[[ 4., 5.],
- [ 6., 7.]]])]
+ [array([[[0., 1.],
+ [2., 3.]]]), array([[[4., 5.],
+ [6., 7.]]])]
"""
if _nx.ndim(ary) < 2:
@@ -989,30 +985,28 @@ def dsplit(ary, indices_or_sections):
--------
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> x
- array([[[ 0., 1., 2., 3.],
- [ 4., 5., 6., 7.]],
- [[ 8., 9., 10., 11.],
- [ 12., 13., 14., 15.]]])
+ array([[[ 0., 1., 2., 3.],
+ [ 4., 5., 6., 7.]],
+ [[ 8., 9., 10., 11.],
+ [12., 13., 14., 15.]]])
>>> np.dsplit(x, 2)
- [array([[[ 0., 1.],
- [ 4., 5.]],
- [[ 8., 9.],
- [ 12., 13.]]]),
- array([[[ 2., 3.],
- [ 6., 7.]],
- [[ 10., 11.],
- [ 14., 15.]]])]
+ [array([[[ 0., 1.],
+ [ 4., 5.]],
+ [[ 8., 9.],
+ [12., 13.]]]), array([[[ 2., 3.],
+ [ 6., 7.]],
+ [[10., 11.],
+ [14., 15.]]])]
>>> np.dsplit(x, np.array([3, 6]))
- [array([[[ 0., 1., 2.],
- [ 4., 5., 6.]],
- [[ 8., 9., 10.],
- [ 12., 13., 14.]]]),
- array([[[ 3.],
- [ 7.]],
- [[ 11.],
- [ 15.]]]),
- array([], dtype=float64)]
-
+ [array([[[ 0., 1., 2.],
+ [ 4., 5., 6.]],
+ [[ 8., 9., 10.],
+ [12., 13., 14.]]]),
+ array([[[ 3.],
+ [ 7.]],
+ [[11.],
+ [15.]]]),
+ array([], shape=(2, 2, 0), dtype=float64)]
"""
if _nx.ndim(ary) < 3:
raise ValueError('dsplit only works on arrays of 3 or more dimensions')
@@ -1092,15 +1086,15 @@ def kron(a, b):
Examples
--------
>>> np.kron([1,10,100], [5,6,7])
- array([ 5, 6, 7, 50, 60, 70, 500, 600, 700])
+ array([ 5, 6, 7, ..., 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
- array([ 5, 50, 500, 6, 60, 600, 7, 70, 700])
+ array([ 5, 50, 500, ..., 7, 70, 700])
>>> np.kron(np.eye(2), np.ones((2,2)))
- array([[ 1., 1., 0., 0.],
- [ 1., 1., 0., 0.],
- [ 0., 0., 1., 1.],
- [ 0., 0., 1., 1.]])
+ array([[1., 1., 0., 0.],
+ [1., 1., 0., 0.],
+ [0., 0., 1., 1.],
+ [0., 0., 1., 1.]])
>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
index 27d848608..54d0240ef 100644
--- a/numpy/lib/twodim_base.py
+++ b/numpy/lib/twodim_base.py
@@ -77,13 +77,13 @@ def fliplr(m):
--------
>>> A = np.diag([1.,2.,3.])
>>> A
- array([[ 1., 0., 0.],
- [ 0., 2., 0.],
- [ 0., 0., 3.]])
+ array([[1., 0., 0.],
+ [0., 2., 0.],
+ [0., 0., 3.]])
>>> np.fliplr(A)
- array([[ 0., 0., 1.],
- [ 0., 2., 0.],
- [ 3., 0., 0.]])
+ array([[0., 0., 1.],
+ [0., 2., 0.],
+ [3., 0., 0.]])
>>> A = np.random.randn(2,3,5)
>>> np.all(np.fliplr(A) == A[:,::-1,...])
@@ -129,13 +129,13 @@ def flipud(m):
--------
>>> A = np.diag([1.0, 2, 3])
>>> A
- array([[ 1., 0., 0.],
- [ 0., 2., 0.],
- [ 0., 0., 3.]])
+ array([[1., 0., 0.],
+ [0., 2., 0.],
+ [0., 0., 3.]])
>>> np.flipud(A)
- array([[ 0., 0., 3.],
- [ 0., 2., 0.],
- [ 1., 0., 0.]])
+ array([[0., 0., 3.],
+ [0., 2., 0.],
+ [1., 0., 0.]])
>>> A = np.random.randn(2,3,5)
>>> np.all(np.flipud(A) == A[::-1,...])
@@ -191,9 +191,9 @@ def eye(N, M=None, k=0, dtype=float, order='C'):
array([[1, 0],
[0, 1]])
>>> np.eye(3, k=1)
- array([[ 0., 1., 0.],
- [ 0., 0., 1.],
- [ 0., 0., 0.]])
+ array([[0., 1., 0.],
+ [0., 0., 1.],
+ [0., 0., 0.]])
"""
if M is None:
@@ -378,9 +378,9 @@ def tri(N, M=None, k=0, dtype=float):
[1, 1, 1, 1, 1]])
>>> np.tri(3, 5, -1)
- array([[ 0., 0., 0., 0., 0.],
- [ 1., 0., 0., 0., 0.],
- [ 1., 1., 0., 0., 0.]])
+ array([[0., 0., 0., 0., 0.],
+ [1., 0., 0., 0., 0.],
+ [1., 1., 0., 0., 0.]])
"""
if M is None:
@@ -540,7 +540,7 @@ def vander(x, N=None, increasing=False):
of the differences between the values of the input vector:
>>> np.linalg.det(np.vander(x))
- 48.000000000000043
+ 48.000000000000043 # may vary
>>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1)
48
@@ -644,6 +644,9 @@ def histogram2d(x, y, bins=10, range=None, normed=None, weights=None,
Examples
--------
+ >>> import matplotlib
+ >>> import matplotlib.pyplot
+ >>> matplotlib.pyplot.switch_backend('agg')
>>> import matplotlib as mpl
>>> import matplotlib.pyplot as plt
@@ -666,6 +669,7 @@ def histogram2d(x, y, bins=10, range=None, normed=None, weights=None,
>>> ax = fig.add_subplot(131, title='imshow: square bins')
>>> plt.imshow(H, interpolation='nearest', origin='low',
... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
+ <matplotlib.image.AxesImage object at 0x...>
:func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges:
@@ -673,6 +677,7 @@ def histogram2d(x, y, bins=10, range=None, normed=None, weights=None,
... aspect='equal')
>>> X, Y = np.meshgrid(xedges, yedges)
>>> ax.pcolormesh(X, Y, H)
+ <matplotlib.collections.QuadMesh object at 0x...>
:class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to
display actual bin edges with interpolation:
@@ -829,7 +834,7 @@ def tril_indices(n, k=0, m=None):
Both for indexing:
>>> a[il1]
- array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15])
+ array([ 0, 4, 5, ..., 13, 14, 15])
And for assigning values:
@@ -944,7 +949,7 @@ def triu_indices(n, k=0, m=None):
Both for indexing:
>>> a[iu1]
- array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15])
+ array([ 0, 1, 2, ..., 10, 11, 15])
And for assigning values:
diff --git a/numpy/lib/type_check.py b/numpy/lib/type_check.py
index 90b1e9a6e..f55517732 100644
--- a/numpy/lib/type_check.py
+++ b/numpy/lib/type_check.py
@@ -105,11 +105,11 @@ def asfarray(a, dtype=_nx.float_):
Examples
--------
>>> np.asfarray([2, 3])
- array([ 2., 3.])
+ array([2., 3.])
>>> np.asfarray([2, 3], dtype='float')
- array([ 2., 3.])
+ array([2., 3.])
>>> np.asfarray([2, 3], dtype='int8')
- array([ 2., 3.])
+ array([2., 3.])
"""
if not _nx.issubdtype(dtype, _nx.inexact):
@@ -146,13 +146,13 @@ def real(val):
--------
>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.real
- array([ 1., 3., 5.])
+ array([1., 3., 5.])
>>> a.real = 9
>>> a
- array([ 9.+2.j, 9.+4.j, 9.+6.j])
+ array([9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = np.array([9, 8, 7])
>>> a
- array([ 9.+2.j, 8.+4.j, 7.+6.j])
+ array([9.+2.j, 8.+4.j, 7.+6.j])
>>> np.real(1 + 1j)
1.0
@@ -192,10 +192,10 @@ def imag(val):
--------
>>> a = np.array([1+2j, 3+4j, 5+6j])
>>> a.imag
- array([ 2., 4., 6.])
+ array([2., 4., 6.])
>>> a.imag = np.array([8, 10, 12])
>>> a
- array([ 1. +8.j, 3.+10.j, 5.+12.j])
+ array([1. +8.j, 3.+10.j, 5.+12.j])
>>> np.imag(1 + 1j)
1.0
@@ -422,11 +422,13 @@ def nan_to_num(x, copy=True):
0.0
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
- array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000,
- -1.28000000e+002, 1.28000000e+002])
+ array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary
+ -1.28000000e+002, 1.28000000e+002])
>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)])
+ array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary
+ -1.28000000e+002, 1.28000000e+002])
>>> np.nan_to_num(y)
- array([ 1.79769313e+308 +0.00000000e+000j,
+ array([ 1.79769313e+308 +0.00000000e+000j, # may vary
0.00000000e+000 +0.00000000e+000j,
0.00000000e+000 +1.79769313e+308j])
"""
@@ -490,12 +492,12 @@ def real_if_close(a, tol=100):
Examples
--------
>>> np.finfo(float).eps
- 2.2204460492503131e-16
+ 2.2204460492503131e-16 # may vary
>>> np.real_if_close([2.1 + 4e-14j], tol=1000)
- array([ 2.1])
+ array([2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol=1000)
- array([ 2.1 +4.00000000e-13j])
+ array([2.1+4.e-13j])
"""
a = asanyarray(a)
@@ -538,7 +540,6 @@ def asscalar(a):
--------
>>> np.asscalar(np.array([24]))
24
-
"""
# 2018-10-10, 1.16
@@ -672,11 +673,11 @@ def common_type(*arrays):
Examples
--------
>>> np.common_type(np.arange(2, dtype=np.float32))
- <type 'numpy.float32'>
+ <class 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
- <type 'numpy.float64'>
+ <class 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
- <type 'numpy.complex128'>
+ <class 'numpy.complex128'>
"""
is_complex = False
diff --git a/numpy/lib/ufunclike.py b/numpy/lib/ufunclike.py
index 9a9e6f9dd..5c411e8c8 100644
--- a/numpy/lib/ufunclike.py
+++ b/numpy/lib/ufunclike.py
@@ -154,11 +154,11 @@ def isposinf(x, out=None):
Examples
--------
>>> np.isposinf(np.PINF)
- array(True, dtype=bool)
+ True
>>> np.isposinf(np.inf)
- array(True, dtype=bool)
+ True
>>> np.isposinf(np.NINF)
- array(False, dtype=bool)
+ False
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False, True])
@@ -224,11 +224,11 @@ def isneginf(x, out=None):
Examples
--------
>>> np.isneginf(np.NINF)
- array(True, dtype=bool)
+ True
>>> np.isneginf(np.inf)
- array(False, dtype=bool)
+ False
>>> np.isneginf(np.PINF)
- array(False, dtype=bool)
+ False
>>> np.isneginf([-np.inf, 0., np.inf])
array([ True, False, False])
diff --git a/numpy/lib/utils.py b/numpy/lib/utils.py
index 84edf4021..5a4cae235 100644
--- a/numpy/lib/utils.py
+++ b/numpy/lib/utils.py
@@ -150,10 +150,8 @@ def deprecate(*args, **kwargs):
Warning:
>>> olduint = np.deprecate(np.uint)
+ DeprecationWarning: `uint64` is deprecated! # may vary
>>> olduint(6)
- /usr/lib/python2.5/site-packages/numpy/lib/utils.py:114:
- DeprecationWarning: uint32 is deprecated
- warnings.warn(str1, DeprecationWarning, stacklevel=2)
6
"""
@@ -201,8 +199,8 @@ def byte_bounds(a):
>>> low, high = np.byte_bounds(I)
>>> high - low == I.size*I.itemsize
True
- >>> I = np.eye(2, dtype='G'); I.dtype
- dtype('complex192')
+ >>> I = np.eye(2); I.dtype
+ dtype('float64')
>>> low, high = np.byte_bounds(I)
>>> high - low == I.size*I.itemsize
True
@@ -263,17 +261,17 @@ def who(vardict=None):
>>> np.who()
Name Shape Bytes Type
===========================================================
- a 10 40 int32
+ a 10 80 int64
b 20 160 float64
- Upper bound on total bytes = 200
+ Upper bound on total bytes = 240
>>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str',
... 'idx':5}
>>> np.who(d)
Name Shape Bytes Type
===========================================================
- y 3 24 float64
x 2 16 float64
+ y 3 24 float64
Upper bound on total bytes = 40
"""
@@ -733,7 +731,7 @@ def lookfor(what, module=None, import_modules=True, regenerate=False,
Examples
--------
- >>> np.lookfor('binary representation')
+ >>> np.lookfor('binary representation') # doctest: +SKIP
Search results for 'binary representation'
------------------------------------------
numpy.binary_repr
@@ -1104,7 +1102,7 @@ def safe_eval(source):
>>> np.safe_eval('open("/home/user/.ssh/id_dsa").read()')
Traceback (most recent call last):
...
- SyntaxError: Unsupported source construct: compiler.ast.CallFunc
+ ValueError: malformed node or string: <_ast.Call object at 0x...>
"""
# Local import to speed up numpy's import time.
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 8363d7377..92fa6cb73 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -377,7 +377,7 @@ def solve(a, b):
>>> b = np.array([9,8])
>>> x = np.linalg.solve(a, b)
>>> x
- array([ 2., 3.])
+ array([2., 3.])
Check that the solution is correct:
@@ -535,10 +535,10 @@ def inv(a):
>>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
>>> inv(a)
- array([[[-2. , 1. ],
- [ 1.5, -0.5]],
- [[-5. , 2. ],
- [ 3. , -1. ]]])
+ array([[[-2. , 1. ],
+ [ 1.5 , -0.5 ]],
+ [[-1.25, 0.75],
+ [ 0.75, -0.25]]])
"""
a, wrap = _makearray(a)
@@ -730,21 +730,21 @@ def cholesky(a):
--------
>>> A = np.array([[1,-2j],[2j,5]])
>>> A
- array([[ 1.+0.j, 0.-2.j],
+ array([[ 1.+0.j, -0.-2.j],
[ 0.+2.j, 5.+0.j]])
>>> L = np.linalg.cholesky(A)
>>> L
- array([[ 1.+0.j, 0.+0.j],
- [ 0.+2.j, 1.+0.j]])
+ array([[1.+0.j, 0.+0.j],
+ [0.+2.j, 1.+0.j]])
>>> np.dot(L, L.T.conj()) # verify that L * L.H = A
- array([[ 1.+0.j, 0.-2.j],
- [ 0.+2.j, 5.+0.j]])
+ array([[1.+0.j, 0.-2.j],
+ [0.+2.j, 5.+0.j]])
>>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
>>> np.linalg.cholesky(A) # an ndarray object is returned
- array([[ 1.+0.j, 0.+0.j],
- [ 0.+2.j, 1.+0.j]])
+ array([[1.+0.j, 0.+0.j],
+ [0.+2.j, 1.+0.j]])
>>> # But a matrix object is returned if A is a matrix object
- >>> LA.cholesky(np.matrix(A))
+ >>> np.linalg.cholesky(np.matrix(A))
matrix([[ 1.+0.j, 0.+0.j],
[ 0.+2.j, 1.+0.j]])
@@ -878,9 +878,9 @@ def qr(a, mode='reduced'):
[1, 1],
[2, 1]])
>>> b = np.array([1, 0, 2, 1])
- >>> q, r = LA.qr(A)
+ >>> q, r = np.linalg.qr(A)
>>> p = np.dot(q.T, b)
- >>> np.dot(LA.inv(r), p)
+ >>> np.dot(np.linalg.inv(r), p)
array([ 1.1e-16, 1.0e+00])
"""
@@ -1049,7 +1049,7 @@ def eigvals(a):
>>> A = np.dot(Q, D)
>>> A = np.dot(A, Q.T)
>>> LA.eigvals(A)
- array([ 1., -1.])
+ array([ 1., -1.]) # random
"""
a, wrap = _makearray(a)
@@ -1131,24 +1131,24 @@ def eigvalsh(a, UPLO='L'):
>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> LA.eigvalsh(a)
- array([ 0.17157288, 5.82842712])
+ array([ 0.17157288, 5.82842712]) # may vary
>>> # demonstrate the treatment of the imaginary part of the diagonal
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
>>> a
- array([[ 5.+2.j, 9.-2.j],
- [ 0.+2.j, 2.-1.j]])
+ array([[5.+2.j, 9.-2.j],
+ [0.+2.j, 2.-1.j]])
>>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
>>> # with:
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
>>> b
- array([[ 5.+0.j, 0.-2.j],
- [ 0.+2.j, 2.+0.j]])
+ array([[5.+0.j, 0.-2.j],
+ [0.+2.j, 2.+0.j]])
>>> wa = LA.eigvalsh(a)
>>> wb = LA.eigvals(b)
>>> wa; wb
- array([ 1., 6.])
- array([ 6.+0.j, 1.+0.j])
+ array([1., 6.])
+ array([6.+0.j, 1.+0.j])
"""
UPLO = UPLO.upper()
@@ -1264,19 +1264,19 @@ def eig(a):
>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
- array([ 1., 2., 3.])
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
+ array([1., 2., 3.])
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
Real matrix possessing complex e-values and e-vectors; note that the
e-values are complex conjugates of each other.
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
- array([ 1. + 1.j, 1. - 1.j])
- array([[ 0.70710678+0.j , 0.70710678+0.j ],
- [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
+ array([1.+1.j, 1.-1.j])
+ array([[0.70710678+0.j , 0.70710678-0.j ],
+ [0. -0.70710678j, 0. +0.70710678j]])
Complex-valued matrix with real e-values (but complex-valued e-vectors);
note that a.conj().T = a, i.e., a is Hermitian.
@@ -1284,9 +1284,9 @@ def eig(a):
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
- array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0}
- array([[ 0.00000000+0.70710678j, 0.70710678+0.j ],
- [ 0.70710678+0.j , 0.00000000+0.70710678j]])
+ array([2.+0.j, 0.+0.j])
+ array([[ 0. +0.70710678j, 0.70710678+0.j ], # may vary
+ [ 0.70710678+0.j , -0. +0.70710678j]])
Be careful about round-off error!
@@ -1294,9 +1294,9 @@ def eig(a):
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
- array([ 1., 1.])
- array([[ 1., 0.],
- [ 0., 1.]])
+ array([1., 1.])
+ array([[1., 0.],
+ [0., 1.]])
"""
a, wrap = _makearray(a)
@@ -1392,49 +1392,49 @@ def eigh(a, UPLO='L'):
>>> from numpy import linalg as LA
>>> a = np.array([[1, -2j], [2j, 5]])
>>> a
- array([[ 1.+0.j, 0.-2.j],
+ array([[ 1.+0.j, -0.-2.j],
[ 0.+2.j, 5.+0.j]])
>>> w, v = LA.eigh(a)
>>> w; v
- array([ 0.17157288, 5.82842712])
- array([[-0.92387953+0.j , -0.38268343+0.j ],
- [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]])
+ array([0.17157288, 5.82842712])
+ array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
+ [ 0. +0.38268343j, 0. -0.92387953j]])
>>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair
- array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j])
+ array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
>>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair
- array([ 0.+0.j, 0.+0.j])
+ array([0.+0.j, 0.+0.j])
>>> A = np.matrix(a) # what happens if input is a matrix object
>>> A
- matrix([[ 1.+0.j, 0.-2.j],
+ matrix([[ 1.+0.j, -0.-2.j],
[ 0.+2.j, 5.+0.j]])
>>> w, v = LA.eigh(A)
>>> w; v
- array([ 0.17157288, 5.82842712])
- matrix([[-0.92387953+0.j , -0.38268343+0.j ],
- [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]])
+ array([0.17157288, 5.82842712])
+ matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary
+ [ 0. +0.38268343j, 0. -0.92387953j]])
>>> # demonstrate the treatment of the imaginary part of the diagonal
>>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
>>> a
- array([[ 5.+2.j, 9.-2.j],
- [ 0.+2.j, 2.-1.j]])
+ array([[5.+2.j, 9.-2.j],
+ [0.+2.j, 2.-1.j]])
>>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
>>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
>>> b
- array([[ 5.+0.j, 0.-2.j],
- [ 0.+2.j, 2.+0.j]])
+ array([[5.+0.j, 0.-2.j],
+ [0.+2.j, 2.+0.j]])
>>> wa, va = LA.eigh(a)
>>> wb, vb = LA.eig(b)
>>> wa; wb
- array([ 1., 6.])
- array([ 6.+0.j, 1.+0.j])
+ array([1., 6.])
+ array([6.+0.j, 1.+0.j])
>>> va; vb
- array([[-0.44721360-0.j , -0.89442719+0.j ],
- [ 0.00000000+0.89442719j, 0.00000000-0.4472136j ]])
- array([[ 0.89442719+0.j , 0.00000000-0.4472136j],
- [ 0.00000000-0.4472136j, 0.89442719+0.j ]])
+ array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary
+ [ 0. +0.89442719j, 0. -0.4472136j ]])
+ array([[ 0.89442719+0.j , -0. +0.4472136j],
+ [-0. +0.4472136j, 0.89442719+0.j ]])
"""
UPLO = UPLO.upper()
if UPLO not in ('L', 'U'):
@@ -1705,9 +1705,9 @@ def cond(x, p=None):
>>> LA.cond(a, 2)
1.4142135623730951
>>> LA.cond(a, -2)
- 0.70710678118654746
+ 0.70710678118654746 # may vary
>>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0))
- 0.70710678118654746
+ 0.70710678118654746 # may vary
"""
x = asarray(x) # in case we have a matrix
@@ -2002,7 +2002,7 @@ def slogdet(a):
>>> a = np.array([[1, 2], [3, 4]])
>>> (sign, logdet) = np.linalg.slogdet(a)
>>> (sign, logdet)
- (-1, 0.69314718055994529)
+ (-1, 0.69314718055994529) # may vary
>>> sign * np.exp(logdet)
-2.0
@@ -2074,7 +2074,7 @@ def det(a):
>>> a = np.array([[1, 2], [3, 4]])
>>> np.linalg.det(a)
- -2.0
+ -2.0 # may vary
Computing determinants for a stack of matrices:
@@ -2181,15 +2181,15 @@ def lstsq(a, b, rcond="warn"):
[ 3., 1.]])
>>> m, c = np.linalg.lstsq(A, y, rcond=None)[0]
- >>> print(m, c)
- 1.0 -0.95
+ >>> m, c
+ (1.0 -0.95) # may vary
Plot the data along with the fitted line:
>>> import matplotlib.pyplot as plt
- >>> plt.plot(x, y, 'o', label='Original data', markersize=10)
- >>> plt.plot(x, m*x + c, 'r', label='Fitted line')
- >>> plt.legend()
+ >>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
+ >>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
+ >>> _ = plt.legend()
>>> plt.show()
"""
@@ -2367,7 +2367,7 @@ def norm(x, ord=None, axis=None, keepdims=False):
>>> from numpy import linalg as LA
>>> a = np.arange(9) - 4
>>> a
- array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
+ array([-4, -3, -2, ..., 2, 3, 4])
>>> b = a.reshape((3, 3))
>>> b
array([[-4, -3, -2],
@@ -2403,13 +2403,13 @@ def norm(x, ord=None, axis=None, keepdims=False):
7.3484692283495345
>>> LA.norm(a, -2)
- nan
+ 0.0
>>> LA.norm(b, -2)
- 1.8570331885190563e-016
+ 1.8570331885190563e-016 # may vary
>>> LA.norm(a, 3)
- 5.8480354764257312
+ 5.8480354764257312 # may vary
>>> LA.norm(a, -3)
- nan
+ 0.0
Using the `axis` argument to compute vector norms:
@@ -2584,18 +2584,20 @@ def multi_dot(arrays):
>>> from numpy.linalg import multi_dot
>>> # Prepare some data
- >>> A = np.random.random(10000, 100)
- >>> B = np.random.random(100, 1000)
- >>> C = np.random.random(1000, 5)
- >>> D = np.random.random(5, 333)
+ >>> A = np.random.random((10000, 100))
+ >>> B = np.random.random((100, 1000))
+ >>> C = np.random.random((1000, 5))
+ >>> D = np.random.random((5, 333))
>>> # the actual dot multiplication
- >>> multi_dot([A, B, C, D])
+ >>> _ = multi_dot([A, B, C, D])
instead of::
- >>> np.dot(np.dot(np.dot(A, B), C), D)
+ >>> _ = np.dot(np.dot(np.dot(A, B), C), D)
+ ...
>>> # or
- >>> A.dot(B).dot(C).dot(D)
+ >>> _ = A.dot(B).dot(C).dot(D)
+ ...
Notes
-----
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index 96d7207bd..63a61599c 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -516,18 +516,18 @@ def set_fill_value(a, fill_value):
array([0, 1, 2, 3, 4])
>>> a = ma.masked_where(a < 3, a)
>>> a
- masked_array(data = [-- -- -- 3 4],
- mask = [ True True True False False],
- fill_value=999999)
+ masked_array(data=[--, --, --, 3, 4],
+ mask=[ True, True, True, False, False],
+ fill_value=999999)
>>> ma.set_fill_value(a, -999)
>>> a
- masked_array(data = [-- -- -- 3 4],
- mask = [ True True True False False],
- fill_value=-999)
+ masked_array(data=[--, --, --, 3, 4],
+ mask=[ True, True, True, False, False],
+ fill_value=-999)
Nothing happens if `a` is not a masked array.
- >>> a = range(5)
+ >>> a = list(range(5))
>>> a
[0, 1, 2, 3, 4]
>>> ma.set_fill_value(a, 100)
@@ -689,13 +689,12 @@ def getdata(a, subok=True):
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
- masked_array(data =
- [[1 --]
- [3 4]],
- mask =
- [[False True]
- [False False]],
- fill_value=999999)
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
>>> ma.getdata(a)
array([[1, 2],
[3, 4]])
@@ -752,20 +751,19 @@ def fix_invalid(a, mask=nomask, copy=True, fill_value=None):
--------
>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
>>> x
- masked_array(data = [-- -1.0 nan inf],
- mask = [ True False False False],
- fill_value = 1e+20)
+ masked_array(data=[--, -1.0, nan, inf],
+ mask=[ True, False, False, False],
+ fill_value=1e+20)
>>> np.ma.fix_invalid(x)
- masked_array(data = [-- -1.0 -- --],
- mask = [ True False True True],
- fill_value = 1e+20)
+ masked_array(data=[--, -1.0, --, --],
+ mask=[ True, False, True, True],
+ fill_value=1e+20)
>>> fixed = np.ma.fix_invalid(x)
>>> fixed.data
- array([ 1.00000000e+00, -1.00000000e+00, 1.00000000e+20,
- 1.00000000e+20])
+ array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20])
>>> x.data
- array([ 1., -1., NaN, Inf])
+ array([ 1., -1., nan, inf])
"""
a = masked_array(a, copy=copy, mask=mask, subok=True)
@@ -1346,9 +1344,9 @@ def make_mask_descr(ndtype):
--------
>>> import numpy.ma as ma
>>> dtype = np.dtype({'names':['foo', 'bar'],
- 'formats':[np.float32, int]})
+ ... 'formats':[np.float32, np.int64]})
>>> dtype
- dtype([('foo', '<f4'), ('bar', '<i4')])
+ dtype([('foo', '<f4'), ('bar', '<i8')])
>>> ma.make_mask_descr(dtype)
dtype([('foo', '|b1'), ('bar', '|b1')])
>>> ma.make_mask_descr(np.float32)
@@ -1381,13 +1379,12 @@ def getmask(a):
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
- masked_array(data =
- [[1 --]
- [3 4]],
- mask =
- [[False True]
- [False False]],
- fill_value=999999)
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
>>> ma.getmask(a)
array([[False, True],
[False, False]])
@@ -1402,12 +1399,11 @@ def getmask(a):
>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
- masked_array(data =
- [[1 2]
- [3 4]],
- mask =
- False,
- fill_value=999999)
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
>>> ma.nomask
False
>>> ma.getmask(b) == ma.nomask
@@ -1445,13 +1441,12 @@ def getmaskarray(arr):
>>> import numpy.ma as ma
>>> a = ma.masked_equal([[1,2],[3,4]], 2)
>>> a
- masked_array(data =
- [[1 --]
- [3 4]],
- mask =
- [[False True]
- [False False]],
- fill_value=999999)
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=2)
>>> ma.getmaskarray(a)
array([[False, True],
[False, False]])
@@ -1460,13 +1455,12 @@ def getmaskarray(arr):
>>> b = ma.masked_array([[1,2],[3,4]])
>>> b
- masked_array(data =
- [[1 2]
- [3 4]],
- mask =
- False,
- fill_value=999999)
- >>> >ma.getmaskarray(b)
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
+ >>> ma.getmaskarray(b)
array([[False, False],
[False, False]])
@@ -1504,9 +1498,9 @@ def is_mask(m):
>>> import numpy.ma as ma
>>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> m
- masked_array(data = [-- 1 -- 2 3],
- mask = [ True False True False False],
- fill_value=999999)
+ masked_array(data=[--, 1, --, 2, 3],
+ mask=[ True, False, True, False, False],
+ fill_value=0)
>>> ma.is_mask(m)
False
>>> ma.is_mask(m.mask)
@@ -1527,14 +1521,14 @@ def is_mask(m):
Arrays with complex dtypes don't return True.
>>> dtype = np.dtype({'names':['monty', 'pithon'],
- 'formats':[bool, bool]})
+ ... 'formats':[bool, bool]})
>>> dtype
dtype([('monty', '|b1'), ('pithon', '|b1')])
>>> m = np.array([(True, False), (False, True), (True, False)],
- dtype=dtype)
+ ... dtype=dtype)
>>> m
- array([(True, False), (False, True), (True, False)],
- dtype=[('monty', '|b1'), ('pithon', '|b1')])
+ array([( True, False), (False, True), ( True, False)],
+ dtype=[('monty', '?'), ('pithon', '?')])
>>> ma.is_mask(m)
False
@@ -1600,7 +1594,7 @@ def make_mask(m, copy=False, shrink=True, dtype=MaskType):
>>> m = np.zeros(4)
>>> m
- array([ 0., 0., 0., 0.])
+ array([0., 0., 0., 0.])
>>> ma.make_mask(m)
False
>>> ma.make_mask(m, shrink=False)
@@ -1616,11 +1610,11 @@ def make_mask(m, copy=False, shrink=True, dtype=MaskType):
>>> arr
[(1, 0), (0, 1), (1, 0), (1, 0)]
>>> dtype = np.dtype({'names':['man', 'mouse'],
- 'formats':[int, int]})
+ ... 'formats':[np.int64, np.int64]})
>>> arr = np.array(arr, dtype=dtype)
>>> arr
array([(1, 0), (0, 1), (1, 0), (1, 0)],
- dtype=[('man', '<i4'), ('mouse', '<i4')])
+ dtype=[('man', '<i8'), ('mouse', '<i8')])
>>> ma.make_mask(arr, dtype=dtype)
array([(True, False), (False, True), (True, False), (True, False)],
dtype=[('man', '|b1'), ('mouse', '|b1')])
@@ -1679,9 +1673,9 @@ def make_mask_none(newshape, dtype=None):
Defining a more complex dtype.
>>> dtype = np.dtype({'names':['foo', 'bar'],
- 'formats':[np.float32, int]})
+ ... 'formats':[np.float32, np.int64]})
>>> dtype
- dtype([('foo', '<f4'), ('bar', '<i4')])
+ dtype([('foo', '<f4'), ('bar', '<i8')])
>>> ma.make_mask_none((3,), dtype=dtype)
array([(False, False), (False, False), (False, False)],
dtype=[('foo', '|b1'), ('bar', '|b1')])
@@ -1779,16 +1773,16 @@ def flatten_mask(mask):
Examples
--------
>>> mask = np.array([0, 0, 1])
- >>> flatten_mask(mask)
+ >>> np.ma.flatten_mask(mask)
array([False, False, True])
>>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
- >>> flatten_mask(mask)
+ >>> np.ma.flatten_mask(mask)
array([False, False, False, True])
>>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
>>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype)
- >>> flatten_mask(mask)
+ >>> np.ma.flatten_mask(mask)
array([False, False, False, False, False, True])
"""
@@ -1873,38 +1867,39 @@ def masked_where(condition, a, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a)
- masked_array(data = [-- -- -- 3],
- mask = [ True True True False],
- fill_value=999999)
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
Mask array `b` conditional on `a`.
>>> b = ['a', 'b', 'c', 'd']
>>> ma.masked_where(a == 2, b)
- masked_array(data = [a b -- d],
- mask = [False False True False],
- fill_value=N/A)
+ masked_array(data=['a', 'b', --, 'd'],
+ mask=[False, False, True, False],
+ fill_value='N/A',
+ dtype='<U1')
Effect of the `copy` argument.
>>> c = ma.masked_where(a <= 2, a)
>>> c
- masked_array(data = [-- -- -- 3],
- mask = [ True True True False],
- fill_value=999999)
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
>>> c[0] = 99
>>> c
- masked_array(data = [99 -- -- 3],
- mask = [False True True False],
- fill_value=999999)
+ masked_array(data=[99, --, --, 3],
+ mask=[False, True, True, False],
+ fill_value=999999)
>>> a
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False)
>>> c[0] = 99
>>> c
- masked_array(data = [99 -- -- 3],
- mask = [False True True False],
- fill_value=999999)
+ masked_array(data=[99, --, --, 3],
+ mask=[False, True, True, False],
+ fill_value=999999)
>>> a
array([99, 1, 2, 3])
@@ -1913,19 +1908,19 @@ def masked_where(condition, a, copy=True):
>>> a = np.arange(4)
>>> a = ma.masked_where(a == 2, a)
>>> a
- masked_array(data = [0 1 -- 3],
- mask = [False False True False],
- fill_value=999999)
+ masked_array(data=[0, 1, --, 3],
+ mask=[False, False, True, False],
+ fill_value=999999)
>>> b = np.arange(4)
>>> b = ma.masked_where(b == 0, b)
>>> b
- masked_array(data = [-- 1 2 3],
- mask = [ True False False False],
- fill_value=999999)
+ masked_array(data=[--, 1, 2, 3],
+ mask=[ True, False, False, False],
+ fill_value=999999)
>>> ma.masked_where(a == 3, b)
- masked_array(data = [-- 1 -- --],
- mask = [ True False True True],
- fill_value=999999)
+ masked_array(data=[--, 1, --, --],
+ mask=[ True, False, True, True],
+ fill_value=999999)
"""
# Make sure that condition is a valid standard-type mask.
@@ -1965,9 +1960,9 @@ def masked_greater(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
- masked_array(data = [0 1 2 --],
- mask = [False False False True],
- fill_value=999999)
+ masked_array(data=[0, 1, 2, --],
+ mask=[False, False, False, True],
+ fill_value=999999)
"""
return masked_where(greater(x, value), x, copy=copy)
@@ -1991,9 +1986,9 @@ def masked_greater_equal(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
- masked_array(data = [0 1 -- --],
- mask = [False False True True],
- fill_value=999999)
+ masked_array(data=[0, 1, --, --],
+ mask=[False, False, True, True],
+ fill_value=999999)
"""
return masked_where(greater_equal(x, value), x, copy=copy)
@@ -2017,9 +2012,9 @@ def masked_less(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
- masked_array(data = [-- -- 2 3],
- mask = [ True True False False],
- fill_value=999999)
+ masked_array(data=[--, --, 2, 3],
+ mask=[ True, True, False, False],
+ fill_value=999999)
"""
return masked_where(less(x, value), x, copy=copy)
@@ -2043,9 +2038,9 @@ def masked_less_equal(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
- masked_array(data = [-- -- -- 3],
- mask = [ True True True False],
- fill_value=999999)
+ masked_array(data=[--, --, --, 3],
+ mask=[ True, True, True, False],
+ fill_value=999999)
"""
return masked_where(less_equal(x, value), x, copy=copy)
@@ -2069,9 +2064,9 @@ def masked_not_equal(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
- masked_array(data = [-- -- 2 --],
- mask = [ True True False True],
- fill_value=999999)
+ masked_array(data=[--, --, 2, --],
+ mask=[ True, True, False, True],
+ fill_value=999999)
"""
return masked_where(not_equal(x, value), x, copy=copy)
@@ -2097,9 +2092,9 @@ def masked_equal(x, value, copy=True):
>>> a
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2)
- masked_array(data = [0 1 -- 3],
- mask = [False False True False],
- fill_value=999999)
+ masked_array(data=[0, 1, --, 3],
+ mask=[False, False, True, False],
+ fill_value=2)
"""
output = masked_where(equal(x, value), x, copy=copy)
@@ -2128,16 +2123,16 @@ def masked_inside(x, v1, v2, copy=True):
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
- masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
- mask = [False False True True False False],
- fill_value=1e+20)
+ masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
+ mask=[False, False, True, True, False, False],
+ fill_value=1e+20)
The order of `v1` and `v2` doesn't matter.
>>> ma.masked_inside(x, 0.3, -0.3)
- masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],
- mask = [False False True True False False],
- fill_value=1e+20)
+ masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
+ mask=[False, False, True, True, False, False],
+ fill_value=1e+20)
"""
if v2 < v1:
@@ -2168,16 +2163,16 @@ def masked_outside(x, v1, v2, copy=True):
>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
- masked_array(data = [-- -- 0.01 0.2 -- --],
- mask = [ True True False False True True],
- fill_value=1e+20)
+ masked_array(data=[--, --, 0.01, 0.2, --, --],
+ mask=[ True, True, False, False, True, True],
+ fill_value=1e+20)
The order of `v1` and `v2` doesn't matter.
>>> ma.masked_outside(x, 0.3, -0.3)
- masked_array(data = [-- -- 0.01 0.2 -- --],
- mask = [ True True False False True True],
- fill_value=1e+20)
+ masked_array(data=[--, --, 0.01, 0.2, --, --],
+ mask=[ True, True, False, False, True, True],
+ fill_value=1e+20)
"""
if v2 < v1:
@@ -2222,20 +2217,27 @@ def masked_object(x, value, copy=True, shrink=True):
>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object(food, 'green_eggs')
- >>> print(eat)
- [-- ham]
+ >>> eat
+ masked_array(data=[--, 'ham'],
+ mask=[ True, False],
+ fill_value='green_eggs',
+ dtype=object)
>>> # plain ol` ham is boring
>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object(fresh_food, 'green_eggs')
- >>> print(eat)
- [cheese ham pineapple]
+ >>> eat
+ masked_array(data=['cheese', 'ham', 'pineapple'],
+ mask=False,
+ fill_value='green_eggs',
+ dtype=object)
Note that `mask` is set to ``nomask`` if possible.
>>> eat
- masked_array(data = [cheese ham pineapple],
- mask = False,
- fill_value=?)
+ masked_array(data=['cheese', 'ham', 'pineapple'],
+ mask=False,
+ fill_value='green_eggs',
+ dtype=object)
"""
if isMaskedArray(x):
@@ -2290,16 +2292,16 @@ def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True):
>>> import numpy.ma as ma
>>> x = np.array([1, 1.1, 2, 1.1, 3])
>>> ma.masked_values(x, 1.1)
- masked_array(data = [1.0 -- 2.0 -- 3.0],
- mask = [False True False True False],
- fill_value=1.1)
+ masked_array(data=[1.0, --, 2.0, --, 3.0],
+ mask=[False, True, False, True, False],
+ fill_value=1.1)
Note that `mask` is set to ``nomask`` if possible.
>>> ma.masked_values(x, 1.5)
- masked_array(data = [ 1. 1.1 2. 1.1 3. ],
- mask = False,
- fill_value=1.5)
+ masked_array(data=[1. , 1.1, 2. , 1.1, 3. ],
+ mask=False,
+ fill_value=1.5)
For integers, the fill value will be different in general to the
result of ``masked_equal``.
@@ -2308,13 +2310,13 @@ def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True):
>>> x
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2)
- masked_array(data = [0 1 -- 3 4],
- mask = [False False True False False],
- fill_value=2)
+ masked_array(data=[0, 1, --, 3, 4],
+ mask=[False, False, True, False, False],
+ fill_value=2)
>>> ma.masked_equal(x, 2)
- masked_array(data = [0 1 -- 3 4],
- mask = [False False True False False],
- fill_value=999999)
+ masked_array(data=[0, 1, --, 3, 4],
+ mask=[False, False, True, False, False],
+ fill_value=2)
"""
xnew = filled(x, value)
@@ -2348,11 +2350,11 @@ def masked_invalid(a, copy=True):
>>> a[2] = np.NaN
>>> a[3] = np.PINF
>>> a
- array([ 0., 1., NaN, Inf, 4.])
+ array([ 0., 1., nan, inf, 4.])
>>> ma.masked_invalid(a)
- masked_array(data = [0.0 1.0 -- -- 4.0],
- mask = [False False True True False],
- fill_value=1e+20)
+ masked_array(data=[0.0, 1.0, --, --, 4.0],
+ mask=[False, False, True, True, False],
+ fill_value=1e+20)
"""
a = np.array(a, copy=copy, subok=True)
@@ -2513,7 +2515,7 @@ def flatten_structured_array(a):
--------
>>> ndtype = [('a', int), ('b', float)]
>>> a = np.array([(1, 1), (2, 2)], dtype=ndtype)
- >>> flatten_structured_array(a)
+ >>> np.ma.flatten_structured_array(a)
array([[1., 1.],
[2., 2.]])
@@ -2684,9 +2686,7 @@ class MaskedIterator(object):
>>> fl.next()
3
>>> fl.next()
- masked_array(data = --,
- mask = True,
- fill_value = 1e+20)
+ masked
>>> fl.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
@@ -3551,6 +3551,11 @@ class MaskedArray(ndarray):
array([[False, False],
[False, False]])
>>> x.shrink_mask()
+ masked_array(
+ data=[[1, 2],
+ [3, 4]],
+ mask=False,
+ fill_value=999999)
>>> x.mask
False
@@ -3639,7 +3644,7 @@ class MaskedArray(ndarray):
-inf
>>> x.set_fill_value(np.pi)
>>> x.fill_value
- 3.1415926535897931
+ 3.1415926535897931 # may vary
Reset to default:
@@ -3688,9 +3693,9 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
>>> x.filled()
- array([1, 2, -999, 4, -999])
+ array([ 1, 2, -999, 4, -999])
>>> type(x.filled())
- <type 'numpy.ndarray'>
+ <class 'numpy.ndarray'>
Subclassing is preserved. This means that if, e.g., the data part of
the masked array is a recarray, `filled` returns a recarray:
@@ -3755,7 +3760,7 @@ class MaskedArray(ndarray):
>>> x.compressed()
array([0, 1])
>>> type(x.compressed())
- <type 'numpy.ndarray'>
+ <class 'numpy.ndarray'>
"""
data = ndarray.ravel(self._data)
@@ -3797,25 +3802,29 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
>>> x.compress([1, 0, 1])
- masked_array(data = [1 3],
- mask = [False False],
- fill_value=999999)
+ masked_array(data=[1, 3],
+ mask=[False, False],
+ fill_value=999999)
>>> x.compress([1, 0, 1], axis=1)
- masked_array(data =
- [[1 3]
- [-- --]
- [7 9]],
- mask =
- [[False False]
- [ True True]
- [False False]],
- fill_value=999999)
+ masked_array(
+ data=[[1, 3],
+ [--, --],
+ [7, 9]],
+ mask=[[False, False],
+ [ True, True],
+ [False, False]],
+ fill_value=999999)
"""
# Get the basic components
@@ -4348,9 +4357,9 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
>>> x.get_imag()
- masked_array(data = [1.0 -- 1.6],
- mask = [False True False],
- fill_value = 1e+20)
+ masked_array(data=[1.0, --, 1.6],
+ mask=[False, True, False],
+ fill_value=1e+20)
"""
result = self._data.imag.view(type(self))
@@ -4383,9 +4392,9 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
>>> x.get_real()
- masked_array(data = [1.0 -- 3.45],
- mask = [False True False],
- fill_value = 1e+20)
+ masked_array(data=[1.0, --, 3.45],
+ mask=[False, True, False],
+ fill_value=1e+20)
"""
result = self._data.real.view(type(self))
@@ -4431,13 +4440,12 @@ class MaskedArray(ndarray):
>>> a = ma.arange(6).reshape((2, 3))
>>> a[1, :] = ma.masked
>>> a
- masked_array(data =
- [[0 1 2]
- [-- -- --]],
- mask =
- [[False False False]
- [ True True True]],
- fill_value = 999999)
+ masked_array(
+ data=[[0, 1, 2],
+ [--, --, --]],
+ mask=[[False, False, False],
+ [ True, True, True]],
+ fill_value=999999)
>>> a.count()
3
@@ -4522,12 +4530,20 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
- >>> print(x.ravel())
- [1 -- 3 -- 5 -- 7 -- 9]
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.ravel()
+ masked_array(data=[1, --, 3, --, 5, --, 7, --, 9],
+ mask=[False, True, False, True, False, True, False, True,
+ False],
+ fill_value=999999)
"""
r = ndarray.ravel(self._data, order=order).view(type(self))
@@ -4576,15 +4592,25 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
- >>> print(x)
- [[-- 2]
- [3 --]]
+ >>> x
+ masked_array(
+ data=[[--, 2],
+ [3, --]],
+ mask=[[ True, False],
+ [False, True]],
+ fill_value=999999)
>>> x = x.reshape((4,1))
- >>> print(x)
- [[--]
- [2]
- [3]
- [--]]
+ >>> x
+ masked_array(
+ data=[[--],
+ [2],
+ [3],
+ [--]],
+ mask=[[ True],
+ [False],
+ [False],
+ [ True]],
+ fill_value=999999)
"""
kwargs.update(order=kwargs.get('order', 'C'))
@@ -4641,21 +4667,36 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
>>> x.put([0,4,8],[10,20,30])
- >>> print(x)
- [[10 -- 3]
- [-- 20 --]
- [7 -- 30]]
+ >>> x
+ masked_array(
+ data=[[10, --, 3],
+ [--, 20, --],
+ [7, --, 30]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
>>> x.put(4,999)
- >>> print(x)
- [[10 -- 3]
- [-- 999 --]
- [7 -- 30]]
+ >>> x
+ masked_array(
+ data=[[10, --, 3],
+ [--, 999, --],
+ [7, --, 30]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
"""
# Hard mask: Get rid of the values/indices that fall on masked data
@@ -4695,14 +4736,14 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
>>> x.ids()
- (166670640, 166659832)
+ (166670640, 166659832) # may vary
If the array has no mask, the address of `nomask` is returned. This address
is typically not close to the data in memory:
>>> x = np.ma.array([1, 2, 3])
>>> x.ids()
- (166691080, 3083169284L)
+ (166691080, 3083169284L) # may vary
"""
if self._mask is nomask:
@@ -4851,13 +4892,12 @@ class MaskedArray(ndarray):
>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
- masked_array(data =
- [[ 1. 0. 0.]
- [ 0. 1. 0.]
- [ 0. 0. 1.]],
- mask =
- False,
- fill_value=1e+20)
+ masked_array(
+ data=[[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]],
+ mask=False,
+ fill_value=1e+20)
>>> x.nonzero()
(array([0, 1, 2]), array([0, 1, 2]))
@@ -4865,15 +4905,14 @@ class MaskedArray(ndarray):
>>> x[1, 1] = ma.masked
>>> x
- masked_array(data =
- [[1.0 0.0 0.0]
- [0.0 -- 0.0]
- [0.0 0.0 1.0]],
- mask =
- [[False False False]
- [False True False]
- [False False False]],
- fill_value=1e+20)
+ masked_array(
+ data=[[1.0, 0.0, 0.0],
+ [0.0, --, 0.0],
+ [0.0, 0.0, 1.0]],
+ mask=[[False, False, False],
+ [False, True, False],
+ [False, False, False]],
+ fill_value=1e+20)
>>> x.nonzero()
(array([0, 2]), array([0, 2]))
@@ -4890,13 +4929,12 @@ class MaskedArray(ndarray):
>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a > 3
- masked_array(data =
- [[False False False]
- [ True True True]
- [ True True True]],
- mask =
- False,
- fill_value=999999)
+ masked_array(
+ data=[[False, False, False],
+ [ True, True, True],
+ [ True, True, True]],
+ mask=False,
+ fill_value=True)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
@@ -4978,18 +5016,27 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
- >>> print(x.sum())
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.sum()
25
- >>> print(x.sum(axis=1))
- [4 5 16]
- >>> print(x.sum(axis=0))
- [8 5 12]
+ >>> x.sum(axis=1)
+ masked_array(data=[4, 5, 16],
+ mask=[False, False, False],
+ fill_value=999999)
+ >>> x.sum(axis=0)
+ masked_array(data=[8, 5, 12],
+ mask=[False, False, False],
+ fill_value=999999)
>>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
- <type 'numpy.int64'>
+ <class 'numpy.int64'>
"""
kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
@@ -5040,8 +5087,11 @@ class MaskedArray(ndarray):
Examples
--------
>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
- >>> print(marr.cumsum())
- [0 1 3 -- -- -- 9 16 24 33]
+ >>> marr.cumsum()
+ masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33],
+ mask=[False, False, False, True, True, True, False, False,
+ False, False],
+ fill_value=999999)
"""
result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out)
@@ -5145,9 +5195,9 @@ class MaskedArray(ndarray):
--------
>>> a = np.ma.array([1,2,3], mask=[False, False, True])
>>> a
- masked_array(data = [1 2 --],
- mask = [False False True],
- fill_value = 999999)
+ masked_array(data=[1, 2, --],
+ mask=[False, False, True],
+ fill_value=999999)
>>> a.mean()
1.5
@@ -5200,9 +5250,9 @@ class MaskedArray(ndarray):
--------
>>> a = np.ma.array([1,2,3])
>>> a.anom()
- masked_array(data = [-1. 0. 1.],
- mask = False,
- fill_value = 1e+20)
+ masked_array(data=[-1., 0., 1.],
+ mask=False,
+ fill_value=1e+20)
"""
m = self.mean(axis, dtype)
@@ -5382,9 +5432,9 @@ class MaskedArray(ndarray):
--------
>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
- masked_array(data = [3 2 --],
- mask = [False False True],
- fill_value = 999999)
+ masked_array(data=[3, 2, --],
+ mask=[False, False, True],
+ fill_value=999999)
>>> a.argsort()
array([1, 0, 2])
@@ -5432,15 +5482,19 @@ class MaskedArray(ndarray):
Examples
--------
- >>> x = np.ma.array(arange(4), mask=[1,1,0,0])
+ >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)
- >>> print(x)
- [[-- --]
- [2 3]]
- >>> print(x.argmin(axis=0, fill_value=-1))
- [0 0]
- >>> print(x.argmin(axis=0, fill_value=9))
- [1 1]
+ >>> x
+ masked_array(
+ data=[[--, --],
+ [2, 3]],
+ mask=[[ True, True],
+ [False, False]],
+ fill_value=999999)
+ >>> x.argmin(axis=0, fill_value=-1)
+ array([0, 0])
+ >>> x.argmin(axis=0, fill_value=9)
+ array([1, 1])
"""
if fill_value is None:
@@ -5531,23 +5585,29 @@ class MaskedArray(ndarray):
Examples
--------
- >>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Default
>>> a.sort()
- >>> print(a)
- [1 3 5 -- --]
+ >>> a
+ masked_array(data=[1, 3, 5, --, --],
+ mask=[False, False, False, True, True],
+ fill_value=999999)
- >>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # Put missing values in the front
>>> a.sort(endwith=False)
- >>> print(a)
- [-- -- 1 3 5]
+ >>> a
+ masked_array(data=[--, --, 1, 3, 5],
+ mask=[ True, True, False, False, False],
+ fill_value=999999)
- >>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
+ >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill_value takes over endwith
>>> a.sort(endwith=False, fill_value=3)
- >>> print(a)
- [1 -- -- 3 5]
+ >>> a
+ masked_array(data=[1, --, --, 3, 5],
+ mask=[False, True, True, False, False],
+ fill_value=999999)
"""
if self._mask is nomask:
@@ -5653,27 +5713,36 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array(np.arange(6), mask=[0 ,1, 0, 0, 0 ,1]).reshape(3, 2)
- >>> print(x)
- [[0 --]
- [2 3]
- [4 --]]
+ >>> x
+ masked_array(
+ data=[[0, --],
+ [2, 3],
+ [4, --]],
+ mask=[[False, True],
+ [False, False],
+ [False, True]],
+ fill_value=999999)
>>> x.mini()
- 0
+ masked_array(data=0,
+ mask=False,
+ fill_value=999999)
>>> x.mini(axis=0)
- masked_array(data = [0 3],
- mask = [False False],
- fill_value = 999999)
- >>> print(x.mini(axis=1))
- [0 2 4]
+ masked_array(data=[0, 3],
+ mask=[False, False],
+ fill_value=999999)
+ >>> x.mini(axis=1)
+ masked_array(data=[0, 2, 4],
+ mask=[False, False, False],
+ fill_value=999999)
There is a small difference between `mini` and `min`:
>>> x[:,1].mini(axis=0)
- masked_array(data = --,
- mask = True,
- fill_value = 999999)
+ masked_array(data=3,
+ mask=False,
+ fill_value=999999)
>>> x[:,1].min(axis=0)
- masked
+ 3
"""
# 2016-04-13, 1.13.0, gh-8764
@@ -5926,7 +5995,7 @@ class MaskedArray(ndarray):
--------
>>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
>>> x.tobytes()
- '\\x01\\x00\\x00\\x00?B\\x0f\\x00?B\\x0f\\x00\\x04\\x00\\x00\\x00'
+ b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00'
"""
return self.filled(fill_value).tobytes(order=order)
@@ -5974,14 +6043,20 @@ class MaskedArray(ndarray):
Examples
--------
>>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> print(x)
- [[1 -- 3]
- [-- 5 --]
- [7 -- 9]]
- >>> print(x.toflex())
- [[(1, False) (2, True) (3, False)]
- [(4, True) (5, False) (6, True)]
- [(7, False) (8, True) (9, False)]]
+ >>> x
+ masked_array(
+ data=[[1, --, 3],
+ [--, 5, --],
+ [7, --, 9]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
+ >>> x.toflex()
+ array([[(1, False), (2, True), (3, False)],
+ [(4, True), (5, False), (6, True)],
+ [(7, False), (8, True), (9, False)]],
+ dtype=[('_data', '<i8'), ('_mask', '?')])
"""
# Get the basic dtype.
@@ -6228,15 +6303,14 @@ def isMaskedArray(x):
[ 0., 0., 1.]])
>>> m = ma.masked_values(a, 0)
>>> m
- masked_array(data =
- [[1.0 -- --]
- [-- 1.0 --]
- [-- -- 1.0]],
- mask =
- [[False True True]
- [ True False True]
- [ True True False]],
- fill_value=0.0)
+ masked_array(
+ data=[[1.0, --, --],
+ [--, 1.0, --],
+ [--, --, 1.0]],
+ mask=[[False, True, True],
+ [ True, False, True],
+ [ True, True, False]],
+ fill_value=0.0)
>>> ma.isMaskedArray(a)
False
>>> ma.isMaskedArray(m)
@@ -6400,16 +6474,16 @@ def is_masked(x):
>>> import numpy.ma as ma
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
>>> x
- masked_array(data = [-- 1 -- 2 3],
- mask = [ True False True False False],
- fill_value=999999)
+ masked_array(data=[--, 1, --, 2, 3],
+ mask=[ True, False, True, False, False],
+ fill_value=0)
>>> ma.is_masked(x)
True
>>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
>>> x
- masked_array(data = [0 1 0 2 3],
- mask = False,
- fill_value=999999)
+ masked_array(data=[0, 1, 0, 2, 3],
+ mask=False,
+ fill_value=42)
>>> ma.is_masked(x)
False
@@ -6759,17 +6833,17 @@ def concatenate(arrays, axis=0):
>>> a[1] = ma.masked
>>> b = ma.arange(2, 5)
>>> a
- masked_array(data = [0 -- 2],
- mask = [False True False],
- fill_value = 999999)
+ masked_array(data=[0, --, 2],
+ mask=[False, True, False],
+ fill_value=999999)
>>> b
- masked_array(data = [2 3 4],
- mask = False,
- fill_value = 999999)
+ masked_array(data=[2, 3, 4],
+ mask=False,
+ fill_value=999999)
>>> ma.concatenate([a, b])
- masked_array(data = [0 -- 2 2 3 4],
- mask = [False True False False False False],
- fill_value = 999999)
+ masked_array(data=[0, --, 2, 2, 3, 4],
+ mask=[False, True, False, False, False, False],
+ fill_value=999999)
"""
d = np.concatenate([getdata(a) for a in arrays], axis)
@@ -6924,24 +6998,21 @@ def transpose(a, axes=None):
>>> import numpy.ma as ma
>>> x = ma.arange(4).reshape((2,2))
>>> x[1, 1] = ma.masked
- >>>> x
- masked_array(data =
- [[0 1]
- [2 --]],
- mask =
- [[False False]
- [False True]],
- fill_value = 999999)
+ >>> x
+ masked_array(
+ data=[[0, 1],
+ [2, --]],
+ mask=[[False, False],
+ [False, True]],
+ fill_value=999999)
>>> ma.transpose(x)
- masked_array(data =
- [[0 2]
- [1 --]],
- mask =
- [[False False]
- [False True]],
- fill_value = 999999)
-
+ masked_array(
+ data=[[0, 2],
+ [1, --]],
+ mask=[[False, False],
+ [False, True]],
+ fill_value=999999)
"""
# We can't use 'frommethod', as 'transpose' doesn't take keywords
try:
@@ -6988,39 +7059,39 @@ def resize(x, new_shape):
>>> a = ma.array([[1, 2] ,[3, 4]])
>>> a[0, 1] = ma.masked
>>> a
- masked_array(data =
- [[1 --]
- [3 4]],
- mask =
- [[False True]
- [False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[1, --],
+ [3, 4]],
+ mask=[[False, True],
+ [False, False]],
+ fill_value=999999)
>>> np.resize(a, (3, 3))
- array([[1, 2, 3],
- [4, 1, 2],
- [3, 4, 1]])
+ masked_array(
+ data=[[1, 2, 3],
+ [4, 1, 2],
+ [3, 4, 1]],
+ mask=False,
+ fill_value=999999)
>>> ma.resize(a, (3, 3))
- masked_array(data =
- [[1 -- 3]
- [4 1 --]
- [3 4 1]],
- mask =
- [[False True False]
- [False False True]
- [False False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[1, --, 3],
+ [4, 1, --],
+ [3, 4, 1]],
+ mask=[[False, True, False],
+ [False, False, True],
+ [False, False, False]],
+ fill_value=999999)
A MaskedArray is always returned, regardless of the input type.
>>> a = np.array([[1, 2] ,[3, 4]])
>>> ma.resize(a, (3, 3))
- masked_array(data =
- [[1 2 3]
- [4 1 2]
- [3 4 1]],
- mask =
- False,
- fill_value = 999999)
+ masked_array(
+ data=[[1, 2, 3],
+ [4, 1, 2],
+ [3, 4, 1]],
+ mask=False,
+ fill_value=999999)
"""
# We can't use _frommethods here, as N.resize is notoriously whiny.
@@ -7111,14 +7182,24 @@ def where(condition, x=_NoValue, y=_NoValue):
>>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
... [1, 0, 1],
... [0, 1, 0]])
- >>> print(x)
- [[0.0 -- 2.0]
- [-- 4.0 --]
- [6.0 -- 8.0]]
- >>> print(np.ma.where(x > 5, x, -3.1416))
- [[-3.1416 -- -3.1416]
- [-- -3.1416 --]
- [6.0 -- 8.0]]
+ >>> x
+ masked_array(
+ data=[[0.0, --, 2.0],
+ [--, 4.0, --],
+ [6.0, --, 8.0]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=1e+20)
+ >>> np.ma.where(x > 5, x, -3.1416)
+ masked_array(
+ data=[[-3.1416, --, -3.1416],
+ [--, -3.1416, --],
+ [6.0, --, 8.0]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=1e+20)
"""
@@ -7198,9 +7279,9 @@ def choose(indices, choices, out=None, mode='raise'):
>>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
>>> a = np.array([2, 1, 0])
>>> np.ma.choose(a, choice)
- masked_array(data = [3 2 1],
- mask = False,
- fill_value=999999)
+ masked_array(data=[3, 2, 1],
+ mask=False,
+ fill_value=999999)
"""
def fmask(x):
@@ -7323,25 +7404,23 @@ def mask_rowcols(a, axis=None):
[0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
- masked_array(data =
- [[0 0 0]
- [0 -- 0]
- [0 0 0]],
- mask =
- [[False False False]
- [False True False]
- [False False False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, 0, 0],
+ [0, --, 0],
+ [0, 0, 0]],
+ mask=[[False, False, False],
+ [False, True, False],
+ [False, False, False]],
+ fill_value=1)
>>> ma.mask_rowcols(a)
- masked_array(data =
- [[0 -- 0]
- [-- -- --]
- [0 -- 0]],
- mask =
- [[False True False]
- [ True True True]
- [False True False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, --, 0],
+ [--, --, --],
+ [0, --, 0]],
+ mask=[[False, True, False],
+ [ True, True, True],
+ [False, True, False]],
+ fill_value=1)
"""
a = array(a, subok=False)
@@ -7402,24 +7481,22 @@ def dot(a, b, strict=False, out=None):
Examples
--------
- >>> a = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
- >>> b = ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
+ >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
+ >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
>>> np.ma.dot(a, b)
- masked_array(data =
- [[21 26]
- [45 64]],
- mask =
- [[False False]
- [False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[21, 26],
+ [45, 64]],
+ mask=[[False, False],
+ [False, False]],
+ fill_value=999999)
>>> np.ma.dot(a, b, strict=True)
- masked_array(data =
- [[-- --]
- [-- 64]],
- mask =
- [[ True True]
- [ True False]],
- fill_value = 999999)
+ masked_array(
+ data=[[--, --],
+ [--, 64]],
+ mask=[[ True, True],
+ [ True, False]],
+ fill_value=999999)
"""
# !!!: Works only with 2D arrays. There should be a way to get it to run
@@ -7587,18 +7664,18 @@ def allequal(a, b, fill_value=True):
Examples
--------
- >>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
+ >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
- masked_array(data = [10000000000.0 1e-07 --],
- mask = [False False True],
- fill_value=1e+20)
+ masked_array(data=[10000000000.0, 1e-07, --],
+ mask=[False, False, True],
+ fill_value=1e+20)
- >>> b = array([1e10, 1e-7, -42.0])
+ >>> b = np.array([1e10, 1e-7, -42.0])
>>> b
array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
- >>> ma.allequal(a, b, fill_value=False)
+ >>> np.ma.allequal(a, b, fill_value=False)
False
- >>> ma.allequal(a, b)
+ >>> np.ma.allequal(a, b)
True
"""
@@ -7664,29 +7741,29 @@ def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8):
Examples
--------
- >>> a = ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
+ >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
>>> a
- masked_array(data = [10000000000.0 1e-07 --],
- mask = [False False True],
- fill_value = 1e+20)
- >>> b = ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
- >>> ma.allclose(a, b)
+ masked_array(data=[10000000000.0, 1e-07, --],
+ mask=[False, False, True],
+ fill_value=1e+20)
+ >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
False
- >>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
- >>> b = ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
- >>> ma.allclose(a, b)
+ >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
+ >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
True
- >>> ma.allclose(a, b, masked_equal=False)
+ >>> np.ma.allclose(a, b, masked_equal=False)
False
Masked values are not compared directly.
- >>> a = ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
- >>> b = ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
- >>> ma.allclose(a, b)
+ >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
+ >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
+ >>> np.ma.allclose(a, b)
True
- >>> ma.allclose(a, b, masked_equal=False)
+ >>> np.ma.allclose(a, b, masked_equal=False)
False
"""
@@ -7753,15 +7830,14 @@ def asarray(a, dtype=None, order=None):
--------
>>> x = np.arange(10.).reshape(2, 5)
>>> x
- array([[ 0., 1., 2., 3., 4.],
- [ 5., 6., 7., 8., 9.]])
+ array([[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]])
>>> np.ma.asarray(x)
- masked_array(data =
- [[ 0. 1. 2. 3. 4.]
- [ 5. 6. 7. 8. 9.]],
- mask =
- False,
- fill_value = 1e+20)
+ masked_array(
+ data=[[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]],
+ mask=False,
+ fill_value=1e+20)
>>> type(np.ma.asarray(x))
<class 'numpy.ma.core.MaskedArray'>
@@ -7801,15 +7877,14 @@ def asanyarray(a, dtype=None):
--------
>>> x = np.arange(10.).reshape(2, 5)
>>> x
- array([[ 0., 1., 2., 3., 4.],
- [ 5., 6., 7., 8., 9.]])
+ array([[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]])
>>> np.ma.asanyarray(x)
- masked_array(data =
- [[ 0. 1. 2. 3. 4.]
- [ 5. 6. 7. 8. 9.]],
- mask =
- False,
- fill_value = 1e+20)
+ masked_array(
+ data=[[0., 1., 2., 3., 4.],
+ [5., 6., 7., 8., 9.]],
+ mask=False,
+ fill_value=1e+20)
>>> type(np.ma.asanyarray(x))
<class 'numpy.ma.core.MaskedArray'>
@@ -7953,39 +8028,38 @@ def fromflex(fxarray):
>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4)
>>> rec = x.toflex()
>>> rec
- array([[(0, False), (1, True), (2, False)],
- [(3, True), (4, False), (5, True)],
- [(6, False), (7, True), (8, False)]],
- dtype=[('_data', '<i4'), ('_mask', '|b1')])
+ array([[(0, False), (1, True), (2, False)],
+ [(3, True), (4, False), (5, True)],
+ [(6, False), (7, True), (8, False)]],
+ dtype=[('_data', '<i8'), ('_mask', '?')])
>>> x2 = np.ma.fromflex(rec)
>>> x2
- masked_array(data =
- [[0 -- 2]
- [-- 4 --]
- [6 -- 8]],
- mask =
- [[False True False]
- [ True False True]
- [False True False]],
- fill_value = 999999)
+ masked_array(
+ data=[[0, --, 2],
+ [--, 4, --],
+ [6, --, 8]],
+ mask=[[False, True, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
Extra fields can be present in the structured array but are discarded:
>>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')]
>>> rec2 = np.zeros((2, 2), dtype=dt)
>>> rec2
- array([[(0, False, 0.0), (0, False, 0.0)],
- [(0, False, 0.0), (0, False, 0.0)]],
- dtype=[('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')])
+ array([[(0, False, 0.), (0, False, 0.)],
+ [(0, False, 0.), (0, False, 0.)]],
+ dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')])
>>> y = np.ma.fromflex(rec2)
>>> y
- masked_array(data =
- [[0 0]
- [0 0]],
- mask =
- [[False False]
- [False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[0, 0],
+ [0, 0]],
+ mask=[[False, False],
+ [False, False]],
+ fill_value=999999,
+ dtype=int32)
"""
return masked_array(fxarray['_data'], mask=fxarray['_mask'])
@@ -8086,7 +8160,10 @@ def append(a, b, axis=None):
>>> import numpy.ma as ma
>>> a = ma.masked_values([1, 2, 3], 2)
>>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
- >>> print(ma.append(a, b))
- [1 -- 3 4 5 6 -- 8 9]
+ >>> ma.append(a, b)
+ masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9],
+ mask=[False, True, False, False, False, False, True, False,
+ False],
+ fill_value=999999)
"""
return concatenate([a, b], axis)
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 3be4d3625..2e3b84e1c 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -81,15 +81,14 @@ def count_masked(arr, axis=None):
>>> a[1, 2] = ma.masked
>>> a[2, 1] = ma.masked
>>> a
- masked_array(data =
- [[0 1 2]
- [-- 4 --]
- [6 -- 8]],
- mask =
- [[False False False]
- [ True False True]
- [False True False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, 1, 2],
+ [--, 4, --],
+ [6, --, 8]],
+ mask=[[False, False, False],
+ [ True, False, True],
+ [False, True, False]],
+ fill_value=999999)
>>> ma.count_masked(a)
3
@@ -132,15 +131,15 @@ def masked_all(shape, dtype=float):
--------
>>> import numpy.ma as ma
>>> ma.masked_all((3, 3))
- masked_array(data =
- [[-- -- --]
- [-- -- --]
- [-- -- --]],
- mask =
- [[ True True True]
- [ True True True]
- [ True True True]],
- fill_value=1e+20)
+ masked_array(
+ data=[[--, --, --],
+ [--, --, --],
+ [--, --, --]],
+ mask=[[ True, True, True],
+ [ True, True, True],
+ [ True, True, True]],
+ fill_value=1e+20,
+ dtype=float64)
The `dtype` parameter defines the underlying data type.
@@ -188,16 +187,16 @@ def masked_all_like(arr):
>>> import numpy.ma as ma
>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr
- array([[ 0., 0., 0.],
- [ 0., 0., 0.]], dtype=float32)
+ array([[0., 0., 0.],
+ [0., 0., 0.]], dtype=float32)
>>> ma.masked_all_like(arr)
- masked_array(data =
- [[-- -- --]
- [-- -- --]],
- mask =
- [[ True True True]
- [ True True True]],
- fill_value=1e+20)
+ masked_array(
+ data=[[--, --, --],
+ [--, --, --]],
+ mask=[[ True, True, True],
+ [ True, True, True]],
+ fill_value=1e+20,
+ dtype=float32)
The dtype of the masked array matches the dtype of `arr`.
@@ -492,28 +491,45 @@ if apply_over_axes.__doc__ is not None:
Examples
--------
- >>> a = ma.arange(24).reshape(2,3,4)
- >>> a[:,0,1] = ma.masked
- >>> a[:,1,:] = ma.masked
- >>> print(a)
- [[[0 -- 2 3]
- [-- -- -- --]
- [8 9 10 11]]
-
- [[12 -- 14 15]
- [-- -- -- --]
- [20 21 22 23]]]
- >>> print(ma.apply_over_axes(ma.sum, a, [0,2]))
- [[[46]
- [--]
- [124]]]
+ >>> a = np.ma.arange(24).reshape(2,3,4)
+ >>> a[:,0,1] = np.ma.masked
+ >>> a[:,1,:] = np.ma.masked
+ >>> a
+ masked_array(
+ data=[[[0, --, 2, 3],
+ [--, --, --, --],
+ [8, 9, 10, 11]],
+ [[12, --, 14, 15],
+ [--, --, --, --],
+ [20, 21, 22, 23]]],
+ mask=[[[False, True, False, False],
+ [ True, True, True, True],
+ [False, False, False, False]],
+ [[False, True, False, False],
+ [ True, True, True, True],
+ [False, False, False, False]]],
+ fill_value=999999)
+ >>> np.ma.apply_over_axes(np.ma.sum, a, [0,2])
+ masked_array(
+ data=[[[46],
+ [--],
+ [124]]],
+ mask=[[[False],
+ [ True],
+ [False]]],
+ fill_value=999999)
Tuple axis arguments to ufuncs are equivalent:
- >>> print(ma.sum(a, axis=(0,2)).reshape((1,-1,1)))
- [[[46]
- [--]
- [124]]]
+ >>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1))
+ masked_array(
+ data=[[[46],
+ [--],
+ [124]]],
+ mask=[[[False],
+ [ True],
+ [False]]],
+ fill_value=999999)
"""
@@ -558,14 +574,19 @@ def average(a, axis=None, weights=None, returned=False):
1.25
>>> x = np.ma.arange(6.).reshape(3, 2)
- >>> print(x)
- [[ 0. 1.]
- [ 2. 3.]
- [ 4. 5.]]
+ >>> x
+ masked_array(
+ data=[[0., 1.],
+ [2., 3.],
+ [4., 5.]],
+ mask=False,
+ fill_value=1e+20)
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
... returned=True)
- >>> print(avg)
- [2.66666666667 3.66666666667]
+ >>> avg
+ masked_array(data=[2.6666666666666665, 3.6666666666666665],
+ mask=[False, False],
+ fill_value=1e+20)
"""
a = asarray(a)
@@ -676,9 +697,9 @@ def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
>>> np.ma.median(x)
2.5
>>> np.ma.median(x, axis=-1, overwrite_input=True)
- masked_array(data = [ 2. 5.],
- mask = False,
- fill_value = 1e+20)
+ masked_array(data=[2.0, 5.0],
+ mask=[False, False],
+ fill_value=1e+20)
"""
if not hasattr(a, 'mask'):
@@ -856,15 +877,14 @@ def compress_rowcols(x, axis=None):
... [1, 0, 0],
... [0, 0, 0]])
>>> x
- masked_array(data =
- [[-- 1 2]
- [-- 4 5]
- [6 7 8]],
- mask =
- [[ True False False]
- [ True False False]
- [False False False]],
- fill_value = 999999)
+ masked_array(
+ data=[[--, 1, 2],
+ [--, 4, 5],
+ [6, 7, 8]],
+ mask=[[ True, False, False],
+ [ True, False, False],
+ [False, False, False]],
+ fill_value=999999)
>>> np.ma.compress_rowcols(x)
array([[7, 8]])
@@ -937,25 +957,24 @@ def mask_rows(a, axis=None):
[0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
- masked_array(data =
- [[0 0 0]
- [0 -- 0]
- [0 0 0]],
- mask =
- [[False False False]
- [False True False]
- [False False False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, 0, 0],
+ [0, --, 0],
+ [0, 0, 0]],
+ mask=[[False, False, False],
+ [False, True, False],
+ [False, False, False]],
+ fill_value=1)
+
>>> ma.mask_rows(a)
- masked_array(data =
- [[0 0 0]
- [-- -- --]
- [0 0 0]],
- mask =
- [[False False False]
- [ True True True]
- [False False False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, 0, 0],
+ [--, --, --],
+ [0, 0, 0]],
+ mask=[[False, False, False],
+ [ True, True, True],
+ [False, False, False]],
+ fill_value=1)
"""
return mask_rowcols(a, 0)
@@ -982,25 +1001,23 @@ def mask_cols(a, axis=None):
[0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
- masked_array(data =
- [[0 0 0]
- [0 -- 0]
- [0 0 0]],
- mask =
- [[False False False]
- [False True False]
- [False False False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, 0, 0],
+ [0, --, 0],
+ [0, 0, 0]],
+ mask=[[False, False, False],
+ [False, True, False],
+ [False, False, False]],
+ fill_value=1)
>>> ma.mask_cols(a)
- masked_array(data =
- [[0 -- 0]
- [0 -- 0]
- [0 -- 0]],
- mask =
- [[False True False]
- [False True False]
- [False True False]],
- fill_value=999999)
+ masked_array(
+ data=[[0, --, 0],
+ [0, --, 0],
+ [0, --, 0]],
+ mask=[[False, True, False],
+ [False, True, False],
+ [False, True, False]],
+ fill_value=1)
"""
return mask_rowcols(a, 1)
@@ -1078,12 +1095,12 @@ def intersect1d(ar1, ar2, assume_unique=False):
Examples
--------
- >>> x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
- >>> y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
- >>> intersect1d(x, y)
- masked_array(data = [1 3 --],
- mask = [False False True],
- fill_value = 999999)
+ >>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1])
+ >>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1])
+ >>> np.ma.intersect1d(x, y)
+ masked_array(data=[1, 3, --],
+ mask=[False, False, True],
+ fill_value=999999)
"""
if assume_unique:
@@ -1216,9 +1233,9 @@ def setdiff1d(ar1, ar2, assume_unique=False):
--------
>>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1])
>>> np.ma.setdiff1d(x, [1, 2])
- masked_array(data = [3 --],
- mask = [False True],
- fill_value = 999999)
+ masked_array(data=[3, --],
+ mask=[False, True],
+ fill_value=999999)
"""
if assume_unique:
@@ -1483,7 +1500,9 @@ class mr_class(MAxisConcatenator):
Examples
--------
>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
- array([1, 2, 3, 0, 0, 4, 5, 6])
+ masked_array(data=[1, 2, 3, ..., 4, 5, 6],
+ mask=False,
+ fill_value=999999)
"""
def __init__(self):
@@ -1524,19 +1543,19 @@ def flatnotmasked_edges(a):
Examples
--------
>>> a = np.ma.arange(10)
- >>> flatnotmasked_edges(a)
- [0,-1]
+ >>> np.ma.flatnotmasked_edges(a)
+ array([0, 9])
>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])
- >>> flatnotmasked_edges(a)
+ >>> np.ma.flatnotmasked_edges(a)
array([3, 8])
>>> a[:] = np.ma.masked
- >>> print(flatnotmasked_edges(ma))
+ >>> print(np.ma.flatnotmasked_edges(a))
None
"""
@@ -1588,7 +1607,7 @@ def notmasked_edges(a, axis=None):
>>> np.array(am[~am.mask])
array([0, 1, 2, 3, 6])
- >>> np.ma.notmasked_edges(ma)
+ >>> np.ma.notmasked_edges(am)
array([0, 6])
"""
@@ -1709,15 +1728,11 @@ def notmasked_contiguous(a, axis=None):
[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]
>>> np.ma.notmasked_contiguous(ma, axis=0)
- [[slice(0, 1, None), slice(2, 3, None)], # column broken into two segments
- [], # fully masked column
- [slice(0, 1, None)],
- [slice(0, 3, None)]]
+ [[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]]
>>> np.ma.notmasked_contiguous(ma, axis=1)
- [[slice(0, 1, None), slice(2, 4, None)], # row broken into two segments
- [slice(3, 4, None)],
- [slice(0, 1, None), slice(3, 4, None)]]
+ [[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]]
+
"""
a = asarray(a)
nd = a.ndim
diff --git a/numpy/ma/tests/test_core.py b/numpy/ma/tests/test_core.py
index 2775b11ec..e0dbf1b1a 100644
--- a/numpy/ma/tests/test_core.py
+++ b/numpy/ma/tests/test_core.py
@@ -2401,9 +2401,9 @@ class TestMaskedArrayInPlaceArithmetics(object):
assert_equal(xm, y + 1)
(x, _, xm) = self.floatdata
- id1 = x.data.ctypes._data
+ id1 = x.data.ctypes.data
x += 1.
- assert_(id1 == x.data.ctypes._data)
+ assert_(id1 == x.data.ctypes.data)
assert_equal(x, y + 1.)
def test_inplace_addition_array(self):
diff --git a/numpy/matlib.py b/numpy/matlib.py
index 004e5f0c8..9e115943a 100644
--- a/numpy/matlib.py
+++ b/numpy/matlib.py
@@ -39,11 +39,11 @@ def empty(shape, dtype=None, order='C'):
--------
>>> import numpy.matlib
>>> np.matlib.empty((2, 2)) # filled with random data
- matrix([[ 6.76425276e-320, 9.79033856e-307],
- [ 7.39337286e-309, 3.22135945e-309]]) #random
+ matrix([[ 6.76425276e-320, 9.79033856e-307], # random
+ [ 7.39337286e-309, 3.22135945e-309]])
>>> np.matlib.empty((2, 2), dtype=int)
- matrix([[ 6600475, 0],
- [ 6586976, 22740995]]) #random
+ matrix([[ 6600475, 0], # random
+ [ 6586976, 22740995]])
"""
return ndarray.__new__(matrix, shape, dtype, order=order)
@@ -82,11 +82,11 @@ def ones(shape, dtype=None, order='C'):
Examples
--------
>>> np.matlib.ones((2,3))
- matrix([[ 1., 1., 1.],
- [ 1., 1., 1.]])
+ matrix([[1., 1., 1.],
+ [1., 1., 1.]])
>>> np.matlib.ones(2)
- matrix([[ 1., 1.]])
+ matrix([[1., 1.]])
"""
a = ndarray.__new__(matrix, shape, dtype, order=order)
@@ -126,11 +126,11 @@ def zeros(shape, dtype=None, order='C'):
--------
>>> import numpy.matlib
>>> np.matlib.zeros((2, 3))
- matrix([[ 0., 0., 0.],
- [ 0., 0., 0.]])
+ matrix([[0., 0., 0.],
+ [0., 0., 0.]])
>>> np.matlib.zeros(2)
- matrix([[ 0., 0.]])
+ matrix([[0., 0.]])
"""
a = ndarray.__new__(matrix, shape, dtype, order=order)
@@ -210,9 +210,9 @@ def eye(n,M=None, k=0, dtype=float, order='C'):
--------
>>> import numpy.matlib
>>> np.matlib.eye(3, k=1, dtype=float)
- matrix([[ 0., 1., 0.],
- [ 0., 0., 1.],
- [ 0., 0., 0.]])
+ matrix([[0., 1., 0.],
+ [0., 0., 1.],
+ [0., 0., 0.]])
"""
return asmatrix(np.eye(n, M=M, k=k, dtype=dtype, order=order))
@@ -243,19 +243,20 @@ def rand(*args):
Examples
--------
+ >>> np.random.seed(123)
>>> import numpy.matlib
>>> np.matlib.rand(2, 3)
- matrix([[ 0.68340382, 0.67926887, 0.83271405],
- [ 0.00793551, 0.20468222, 0.95253525]]) #random
+ matrix([[0.69646919, 0.28613933, 0.22685145],
+ [0.55131477, 0.71946897, 0.42310646]])
>>> np.matlib.rand((2, 3))
- matrix([[ 0.84682055, 0.73626594, 0.11308016],
- [ 0.85429008, 0.3294825 , 0.89139555]]) #random
+ matrix([[0.9807642 , 0.68482974, 0.4809319 ],
+ [0.39211752, 0.34317802, 0.72904971]])
If the first argument is a tuple, other arguments are ignored:
>>> np.matlib.rand((2, 3), 4)
- matrix([[ 0.46898646, 0.15163588, 0.95188261],
- [ 0.59208621, 0.09561818, 0.00583606]]) #random
+ matrix([[0.43857224, 0.0596779 , 0.39804426],
+ [0.73799541, 0.18249173, 0.17545176]])
"""
if isinstance(args[0], tuple):
@@ -294,18 +295,19 @@ def randn(*args):
Examples
--------
+ >>> np.random.seed(123)
>>> import numpy.matlib
>>> np.matlib.randn(1)
- matrix([[-0.09542833]]) #random
+ matrix([[-1.0856306]])
>>> np.matlib.randn(1, 2, 3)
- matrix([[ 0.16198284, 0.0194571 , 0.18312985],
- [-0.7509172 , 1.61055 , 0.45298599]]) #random
+ matrix([[ 0.99734545, 0.2829785 , -1.50629471],
+ [-0.57860025, 1.65143654, -2.42667924]])
Two-by-four matrix of samples from :math:`N(3, 6.25)`:
>>> 2.5 * np.matlib.randn((2, 4)) + 3
- matrix([[ 4.74085004, 8.89381862, 4.09042411, 4.83721922],
- [ 7.52373709, 5.07933944, -2.64043543, 0.45610557]]) #random
+ matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462],
+ [2.76322758, 6.72847407, 1.40274501, 1.8900451 ]])
"""
if isinstance(args[0], tuple):
diff --git a/numpy/matrixlib/defmatrix.py b/numpy/matrixlib/defmatrix.py
index 93b344cd4..6f8eadf86 100644
--- a/numpy/matrixlib/defmatrix.py
+++ b/numpy/matrixlib/defmatrix.py
@@ -104,9 +104,9 @@ class matrix(N.ndarray):
Examples
--------
>>> a = np.matrix('1 2; 3 4')
- >>> print(a)
- [[1 2]
- [3 4]]
+ >>> a
+ matrix([[1, 2],
+ [3, 4]])
>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],
@@ -310,12 +310,12 @@ class matrix(N.ndarray):
matrix([[3],
[7]])
>>> x.sum(axis=1, dtype='float')
- matrix([[ 3.],
- [ 7.]])
- >>> out = np.zeros((1, 2), dtype='float')
- >>> x.sum(axis=1, dtype='float', out=out)
- matrix([[ 3.],
- [ 7.]])
+ matrix([[3.],
+ [7.]])
+ >>> out = np.zeros((2, 1), dtype='float')
+ >>> x.sum(axis=1, dtype='float', out=np.asmatrix(out))
+ matrix([[3.],
+ [7.]])
"""
return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis)
@@ -437,7 +437,7 @@ class matrix(N.ndarray):
>>> x.mean()
5.5
>>> x.mean(0)
- matrix([[ 4., 5., 6., 7.]])
+ matrix([[4., 5., 6., 7.]])
>>> x.mean(1)
matrix([[ 1.5],
[ 5.5],
@@ -469,9 +469,9 @@ class matrix(N.ndarray):
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.std()
- 3.4520525295346629
+ 3.4520525295346629 # may vary
>>> x.std(0)
- matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]])
+ matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary
>>> x.std(1)
matrix([[ 1.11803399],
[ 1.11803399],
@@ -505,11 +505,11 @@ class matrix(N.ndarray):
>>> x.var()
11.916666666666666
>>> x.var(0)
- matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]])
+ matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary
>>> x.var(1)
- matrix([[ 1.25],
- [ 1.25],
- [ 1.25]])
+ matrix([[1.25],
+ [1.25],
+ [1.25]])
"""
return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis)
@@ -824,7 +824,7 @@ class matrix(N.ndarray):
matrix([[-2. , 1. ],
[ 1.5, -0.5]])
>>> m.getI() * m
- matrix([[ 1., 0.],
+ matrix([[ 1., 0.], # may vary
[ 0., 1.]])
"""
@@ -886,7 +886,8 @@ class matrix(N.ndarray):
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> x.getA1()
- array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
+ array([ 0, 1, 2, ..., 9, 10, 11])
+
"""
return self.__array__().ravel()
@@ -986,10 +987,10 @@ class matrix(N.ndarray):
[ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j],
[ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]])
>>> z.getH()
- matrix([[ 0. +0.j, 4. +4.j, 8. +8.j],
- [ 1. +1.j, 5. +5.j, 9. +9.j],
- [ 2. +2.j, 6. +6.j, 10.+10.j],
- [ 3. +3.j, 7. +7.j, 11.+11.j]])
+ matrix([[ 0. -0.j, 4. +4.j, 8. +8.j],
+ [ 1. +1.j, 5. +5.j, 9. +9.j],
+ [ 2. +2.j, 6. +6.j, 10.+10.j],
+ [ 3. +3.j, 7. +7.j, 11.+11.j]])
"""
if issubclass(self.dtype.type, N.complexfloating):
diff --git a/numpy/polynomial/chebyshev.py b/numpy/polynomial/chebyshev.py
index 92cdb18d2..e0734e1b8 100644
--- a/numpy/polynomial/chebyshev.py
+++ b/numpy/polynomial/chebyshev.py
@@ -361,12 +361,12 @@ def poly2cheb(pol):
>>> from numpy import polynomial as P
>>> p = P.Polynomial(range(4))
>>> p
- Polynomial([ 0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> c = p.convert(kind=P.Chebyshev)
>>> c
- Chebyshev([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1])
+ Chebyshev([1. , 3.25, 1. , 0.75], domain=[-1., 1.], window=[-1., 1.])
>>> P.chebyshev.poly2cheb(range(4))
- array([ 1. , 3.25, 1. , 0.75])
+ array([1. , 3.25, 1. , 0.75])
"""
[pol] = pu.as_series([pol])
@@ -413,12 +413,12 @@ def cheb2poly(c):
>>> from numpy import polynomial as P
>>> c = P.Chebyshev(range(4))
>>> c
- Chebyshev([ 0., 1., 2., 3.], [-1., 1.])
+ Chebyshev([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> p = c.convert(kind=P.Polynomial)
>>> p
- Polynomial([ -2., -8., 4., 12.], [-1., 1.])
+ Polynomial([-2., -8., 4., 12.], domain=[-1., 1.], window=[-1., 1.])
>>> P.chebyshev.cheb2poly(range(4))
- array([ -2., -8., 4., 12.])
+ array([-2., -8., 4., 12.])
"""
from .polynomial import polyadd, polysub, polymulx
@@ -538,7 +538,7 @@ def chebfromroots(roots):
array([ 0. , -0.25, 0. , 0.25])
>>> j = complex(0,1)
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
- array([ 1.5+0.j, 0.0+0.j, 0.5+0.j])
+ array([1.5+0.j, 0. +0.j, 0.5+0.j])
"""
if len(roots) == 0:
@@ -594,7 +594,7 @@ def chebadd(c1, c2):
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebadd(c1,c2)
- array([ 4., 4., 4.])
+ array([4., 4., 4.])
"""
# c1, c2 are trimmed copies
@@ -688,7 +688,7 @@ def chebmulx(c):
--------
>>> from numpy.polynomial import chebyshev as C
>>> C.chebmulx([1,2,3])
- array([ 1., 2.5, 3., 1.5, 2.])
+ array([1. , 2.5, 1. , 1.5])
"""
# c is a trimmed copy
@@ -796,10 +796,10 @@ def chebdiv(c1, c2):
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
- (array([ 3.]), array([-8., -4.]))
+ (array([3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> C.chebdiv(c2,c1) # neither "intuitive"
- (array([ 0., 2.]), array([-2., -4.]))
+ (array([0., 2.]), array([-2., -4.]))
"""
# c1, c2 are trimmed copies
@@ -853,7 +853,7 @@ def chebpow(c, pow, maxpower=16):
--------
>>> from numpy.polynomial import chebyshev as C
>>> C.chebpow([1, 2, 3, 4], 2)
- array([15.5, 22. , 16. , 14. , 12.5, 12. , 8. ])
+ array([15.5, 22. , 16. , ..., 12.5, 12. , 8. ])
"""
# c is a trimmed copy
@@ -928,13 +928,13 @@ def chebder(c, m=1, scl=1, axis=0):
>>> from numpy.polynomial import chebyshev as C
>>> c = (1,2,3,4)
>>> C.chebder(c)
- array([ 14., 12., 24.])
+ array([14., 12., 24.])
>>> C.chebder(c,3)
- array([ 96.])
+ array([96.])
>>> C.chebder(c,scl=-1)
array([-14., -12., -24.])
>>> C.chebder(c,2,-1)
- array([ 12., 96.])
+ array([12., 96.])
"""
c = np.array(c, ndmin=1, copy=1)
@@ -1048,8 +1048,8 @@ def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
>>> C.chebint(c)
array([ 0.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,3)
- array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667,
- 0.00625 ])
+ array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667, # may vary
+ 0.00625 ])
>>> C.chebint(c, k=3)
array([ 3.5, -0.5, 0.5, 0.5])
>>> C.chebint(c,lbnd=-2)
@@ -1674,7 +1674,7 @@ def chebfit(x, y, deg, rcond=None, full=False, w=None):
warnings can be turned off by
>>> import warnings
- >>> warnings.simplefilter('ignore', RankWarning)
+ >>> warnings.simplefilter('ignore', np.RankWarning)
See Also
--------
@@ -1885,7 +1885,7 @@ def chebroots(c):
--------
>>> import numpy.polynomial.chebyshev as cheb
>>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
- array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00])
+ array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00]) # may vary
"""
# c is a trimmed copy
diff --git a/numpy/polynomial/hermite.py b/numpy/polynomial/hermite.py
index 4905f366f..93c9fc564 100644
--- a/numpy/polynomial/hermite.py
+++ b/numpy/polynomial/hermite.py
@@ -114,7 +114,7 @@ def poly2herm(pol):
--------
>>> from numpy.polynomial.hermite import poly2herm
>>> poly2herm(np.arange(4))
- array([ 1. , 2.75 , 0.5 , 0.375])
+ array([1. , 2.75 , 0.5 , 0.375])
"""
[pol] = pu.as_series([pol])
@@ -160,7 +160,7 @@ def herm2poly(c):
--------
>>> from numpy.polynomial.hermite import herm2poly
>>> herm2poly([ 1. , 2.75 , 0.5 , 0.375])
- array([ 0., 1., 2., 3.])
+ array([0., 1., 2., 3.])
"""
from .polynomial import polyadd, polysub, polymulx
@@ -280,10 +280,10 @@ def hermfromroots(roots):
>>> from numpy.polynomial.hermite import hermfromroots, hermval
>>> coef = hermfromroots((-1, 0, 1))
>>> hermval((-1, 0, 1), coef)
- array([ 0., 0., 0.])
+ array([0., 0., 0.])
>>> coef = hermfromroots((-1j, 1j))
>>> hermval((-1j, 1j), coef)
- array([ 0.+0.j, 0.+0.j])
+ array([0.+0.j, 0.+0.j])
"""
if len(roots) == 0:
@@ -337,7 +337,7 @@ def hermadd(c1, c2):
--------
>>> from numpy.polynomial.hermite import hermadd
>>> hermadd([1, 2, 3], [1, 2, 3, 4])
- array([ 2., 4., 6., 4.])
+ array([2., 4., 6., 4.])
"""
# c1, c2 are trimmed copies
@@ -385,7 +385,7 @@ def hermsub(c1, c2):
--------
>>> from numpy.polynomial.hermite import hermsub
>>> hermsub([1, 2, 3, 4], [1, 2, 3])
- array([ 0., 0., 0., 4.])
+ array([0., 0., 0., 4.])
"""
# c1, c2 are trimmed copies
@@ -435,7 +435,7 @@ def hermmulx(c):
--------
>>> from numpy.polynomial.hermite import hermmulx
>>> hermmulx([1, 2, 3])
- array([ 2. , 6.5, 1. , 1.5])
+ array([2. , 6.5, 1. , 1.5])
"""
# c is a trimmed copy
@@ -488,7 +488,7 @@ def hermmul(c1, c2):
--------
>>> from numpy.polynomial.hermite import hermmul
>>> hermmul([1, 2, 3], [0, 1, 2])
- array([ 52., 29., 52., 7., 6.])
+ array([52., 29., 52., 7., 6.])
"""
# s1, s2 are trimmed copies
@@ -557,11 +557,11 @@ def hermdiv(c1, c2):
--------
>>> from numpy.polynomial.hermite import hermdiv
>>> hermdiv([ 52., 29., 52., 7., 6.], [0, 1, 2])
- (array([ 1., 2., 3.]), array([ 0.]))
+ (array([1., 2., 3.]), array([0.]))
>>> hermdiv([ 54., 31., 52., 7., 6.], [0, 1, 2])
- (array([ 1., 2., 3.]), array([ 2., 2.]))
+ (array([1., 2., 3.]), array([2., 2.]))
>>> hermdiv([ 53., 30., 52., 7., 6.], [0, 1, 2])
- (array([ 1., 2., 3.]), array([ 1., 1.]))
+ (array([1., 2., 3.]), array([1., 1.]))
"""
# c1, c2 are trimmed copies
@@ -617,7 +617,7 @@ def hermpow(c, pow, maxpower=16):
--------
>>> from numpy.polynomial.hermite import hermpow
>>> hermpow([1, 2, 3], 2)
- array([ 81., 52., 82., 12., 9.])
+ array([81., 52., 82., 12., 9.])
"""
# c is a trimmed copy
@@ -690,9 +690,9 @@ def hermder(c, m=1, scl=1, axis=0):
--------
>>> from numpy.polynomial.hermite import hermder
>>> hermder([ 1. , 0.5, 0.5, 0.5])
- array([ 1., 2., 3.])
+ array([1., 2., 3.])
>>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2)
- array([ 1., 2., 3.])
+ array([1., 2., 3.])
"""
c = np.array(c, ndmin=1, copy=1)
@@ -799,15 +799,15 @@ def hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
--------
>>> from numpy.polynomial.hermite import hermint
>>> hermint([1,2,3]) # integrate once, value 0 at 0.
- array([ 1. , 0.5, 0.5, 0.5])
+ array([1. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
- array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625 ])
+ array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary
>>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
- array([ 2. , 0.5, 0.5, 0.5])
+ array([2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
array([-2. , 0.5, 0.5, 0.5])
>>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
- array([ 1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625 ])
+ array([ 1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary
"""
c = np.array(c, ndmin=1, copy=1)
@@ -918,8 +918,8 @@ def hermval(x, c, tensor=True):
>>> hermval(1, coef)
11.0
>>> hermval([[1,2],[3,4]], coef)
- array([[ 11., 51.],
- [ 115., 203.]])
+ array([[ 11., 51.],
+ [115., 203.]])
"""
c = np.array(c, ndmin=1, copy=0)
@@ -1437,7 +1437,7 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None):
warnings can be turned off by
>>> import warnings
- >>> warnings.simplefilter('ignore', RankWarning)
+ >>> warnings.simplefilter('ignore', np.RankWarning)
See Also
--------
@@ -1490,7 +1490,7 @@ def hermfit(x, y, deg, rcond=None, full=False, w=None):
>>> err = np.random.randn(len(x))/10
>>> y = hermval(x, [1, 2, 3]) + err
>>> hermfit(x, y, 2)
- array([ 0.97902637, 1.99849131, 3.00006 ])
+ array([1.0218, 1.9986, 2.9999]) # may vary
"""
x = np.asarray(x) + 0.0
@@ -1656,9 +1656,9 @@ def hermroots(c):
>>> from numpy.polynomial.hermite import hermroots, hermfromroots
>>> coef = hermfromroots([-1, 0, 1])
>>> coef
- array([ 0. , 0.25 , 0. , 0.125])
+ array([0. , 0.25 , 0. , 0.125])
>>> hermroots(coef)
- array([ -1.00000000e+00, -1.38777878e-17, 1.00000000e+00])
+ array([-1.00000000e+00, -1.38777878e-17, 1.00000000e+00])
"""
# c is a trimmed copy
diff --git a/numpy/polynomial/hermite_e.py b/numpy/polynomial/hermite_e.py
index 6cb044a55..bafb4b997 100644
--- a/numpy/polynomial/hermite_e.py
+++ b/numpy/polynomial/hermite_e.py
@@ -161,7 +161,7 @@ def herme2poly(c):
--------
>>> from numpy.polynomial.hermite_e import herme2poly
>>> herme2poly([ 2., 10., 2., 3.])
- array([ 0., 1., 2., 3.])
+ array([0., 1., 2., 3.])
"""
from .polynomial import polyadd, polysub, polymulx
@@ -281,10 +281,10 @@ def hermefromroots(roots):
>>> from numpy.polynomial.hermite_e import hermefromroots, hermeval
>>> coef = hermefromroots((-1, 0, 1))
>>> hermeval((-1, 0, 1), coef)
- array([ 0., 0., 0.])
+ array([0., 0., 0.])
>>> coef = hermefromroots((-1j, 1j))
>>> hermeval((-1j, 1j), coef)
- array([ 0.+0.j, 0.+0.j])
+ array([0.+0.j, 0.+0.j])
"""
if len(roots) == 0:
@@ -338,7 +338,7 @@ def hermeadd(c1, c2):
--------
>>> from numpy.polynomial.hermite_e import hermeadd
>>> hermeadd([1, 2, 3], [1, 2, 3, 4])
- array([ 2., 4., 6., 4.])
+ array([2., 4., 6., 4.])
"""
# c1, c2 are trimmed copies
@@ -386,7 +386,7 @@ def hermesub(c1, c2):
--------
>>> from numpy.polynomial.hermite_e import hermesub
>>> hermesub([1, 2, 3, 4], [1, 2, 3])
- array([ 0., 0., 0., 4.])
+ array([0., 0., 0., 4.])
"""
# c1, c2 are trimmed copies
@@ -432,7 +432,7 @@ def hermemulx(c):
--------
>>> from numpy.polynomial.hermite_e import hermemulx
>>> hermemulx([1, 2, 3])
- array([ 2., 7., 2., 3.])
+ array([2., 7., 2., 3.])
"""
# c is a trimmed copy
@@ -485,7 +485,7 @@ def hermemul(c1, c2):
--------
>>> from numpy.polynomial.hermite_e import hermemul
>>> hermemul([1, 2, 3], [0, 1, 2])
- array([ 14., 15., 28., 7., 6.])
+ array([14., 15., 28., 7., 6.])
"""
# s1, s2 are trimmed copies
@@ -554,9 +554,9 @@ def hermediv(c1, c2):
--------
>>> from numpy.polynomial.hermite_e import hermediv
>>> hermediv([ 14., 15., 28., 7., 6.], [0, 1, 2])
- (array([ 1., 2., 3.]), array([ 0.]))
+ (array([1., 2., 3.]), array([0.]))
>>> hermediv([ 15., 17., 28., 7., 6.], [0, 1, 2])
- (array([ 1., 2., 3.]), array([ 1., 2.]))
+ (array([1., 2., 3.]), array([1., 2.]))
"""
# c1, c2 are trimmed copies
@@ -612,7 +612,7 @@ def hermepow(c, pow, maxpower=16):
--------
>>> from numpy.polynomial.hermite_e import hermepow
>>> hermepow([1, 2, 3], 2)
- array([ 23., 28., 46., 12., 9.])
+ array([23., 28., 46., 12., 9.])
"""
# c is a trimmed copy
@@ -685,9 +685,9 @@ def hermeder(c, m=1, scl=1, axis=0):
--------
>>> from numpy.polynomial.hermite_e import hermeder
>>> hermeder([ 1., 1., 1., 1.])
- array([ 1., 2., 3.])
+ array([1., 2., 3.])
>>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2)
- array([ 1., 2., 3.])
+ array([1., 2., 3.])
"""
c = np.array(c, ndmin=1, copy=1)
@@ -794,15 +794,15 @@ def hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
--------
>>> from numpy.polynomial.hermite_e import hermeint
>>> hermeint([1, 2, 3]) # integrate once, value 0 at 0.
- array([ 1., 1., 1., 1.])
+ array([1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0
- array([-0.25 , 1. , 0.5 , 0.33333333, 0.25 ])
+ array([-0.25 , 1. , 0.5 , 0.33333333, 0.25 ]) # may vary
>>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0.
- array([ 2., 1., 1., 1.])
+ array([2., 1., 1., 1.])
>>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1
array([-1., 1., 1., 1.])
>>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1)
- array([ 1.83333333, 0. , 0.5 , 0.33333333, 0.25 ])
+ array([ 1.83333333, 0. , 0.5 , 0.33333333, 0.25 ]) # may vary
"""
c = np.array(c, ndmin=1, copy=1)
@@ -913,8 +913,8 @@ def hermeval(x, c, tensor=True):
>>> hermeval(1, coef)
3.0
>>> hermeval([[1,2],[3,4]], coef)
- array([[ 3., 14.],
- [ 31., 54.]])
+ array([[ 3., 14.],
+ [31., 54.]])
"""
c = np.array(c, ndmin=1, copy=0)
@@ -1430,7 +1430,7 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None):
warnings can be turned off by
>>> import warnings
- >>> warnings.simplefilter('ignore', RankWarning)
+ >>> warnings.simplefilter('ignore', np.RankWarning)
See Also
--------
@@ -1480,10 +1480,11 @@ def hermefit(x, y, deg, rcond=None, full=False, w=None):
--------
>>> from numpy.polynomial.hermite_e import hermefit, hermeval
>>> x = np.linspace(-10, 10)
+ >>> np.random.seed(123)
>>> err = np.random.randn(len(x))/10
>>> y = hermeval(x, [1, 2, 3]) + err
>>> hermefit(x, y, 2)
- array([ 1.01690445, 1.99951418, 2.99948696])
+ array([ 1.01690445, 1.99951418, 2.99948696]) # may vary
"""
x = np.asarray(x) + 0.0
@@ -1650,9 +1651,9 @@ def hermeroots(c):
>>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots
>>> coef = hermefromroots([-1, 0, 1])
>>> coef
- array([ 0., 2., 0., 1.])
+ array([0., 2., 0., 1.])
>>> hermeroots(coef)
- array([-1., 0., 1.])
+ array([-1., 0., 1.]) # may vary
"""
# c is a trimmed copy
diff --git a/numpy/polynomial/laguerre.py b/numpy/polynomial/laguerre.py
index a116d20a7..9207c9afe 100644
--- a/numpy/polynomial/laguerre.py
+++ b/numpy/polynomial/laguerre.py
@@ -160,7 +160,7 @@ def lag2poly(c):
--------
>>> from numpy.polynomial.laguerre import lag2poly
>>> lag2poly([ 23., -63., 58., -18.])
- array([ 0., 1., 2., 3.])
+ array([0., 1., 2., 3.])
"""
from .polynomial import polyadd, polysub, polymulx
@@ -277,10 +277,10 @@ def lagfromroots(roots):
>>> from numpy.polynomial.laguerre import lagfromroots, lagval
>>> coef = lagfromroots((-1, 0, 1))
>>> lagval((-1, 0, 1), coef)
- array([ 0., 0., 0.])
+ array([0., 0., 0.])
>>> coef = lagfromroots((-1j, 1j))
>>> lagval((-1j, 1j), coef)
- array([ 0.+0.j, 0.+0.j])
+ array([0.+0.j, 0.+0.j])
"""
if len(roots) == 0:
@@ -334,7 +334,7 @@ def lagadd(c1, c2):
--------
>>> from numpy.polynomial.laguerre import lagadd
>>> lagadd([1, 2, 3], [1, 2, 3, 4])
- array([ 2., 4., 6., 4.])
+ array([2., 4., 6., 4.])
"""
@@ -383,7 +383,7 @@ def lagsub(c1, c2):
--------
>>> from numpy.polynomial.laguerre import lagsub
>>> lagsub([1, 2, 3, 4], [1, 2, 3])
- array([ 0., 0., 0., 4.])
+ array([0., 0., 0., 4.])
"""
# c1, c2 are trimmed copies
@@ -433,7 +433,7 @@ def lagmulx(c):
--------
>>> from numpy.polynomial.laguerre import lagmulx
>>> lagmulx([1, 2, 3])
- array([ -1., -1., 11., -9.])
+ array([-1., -1., 11., -9.])
"""
# c is a trimmed copy
@@ -556,9 +556,9 @@ def lagdiv(c1, c2):
--------
>>> from numpy.polynomial.laguerre import lagdiv
>>> lagdiv([ 8., -13., 38., -51., 36.], [0, 1, 2])
- (array([ 1., 2., 3.]), array([ 0.]))
+ (array([1., 2., 3.]), array([0.]))
>>> lagdiv([ 9., -12., 38., -51., 36.], [0, 1, 2])
- (array([ 1., 2., 3.]), array([ 1., 1.]))
+ (array([1., 2., 3.]), array([1., 1.]))
"""
# c1, c2 are trimmed copies
@@ -687,9 +687,9 @@ def lagder(c, m=1, scl=1, axis=0):
--------
>>> from numpy.polynomial.laguerre import lagder
>>> lagder([ 1., 1., 1., -3.])
- array([ 1., 2., 3.])
+ array([1., 2., 3.])
>>> lagder([ 1., 0., 0., -4., 3.], m=2)
- array([ 1., 2., 3.])
+ array([1., 2., 3.])
"""
c = np.array(c, ndmin=1, copy=1)
@@ -805,9 +805,9 @@ def lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
>>> lagint([1,2,3], k=1)
array([ 2., 1., 1., -3.])
>>> lagint([1,2,3], lbnd=-1)
- array([ 11.5, 1. , 1. , -3. ])
+ array([11.5, 1. , 1. , -3. ])
>>> lagint([1,2], m=2, k=[1,2], lbnd=-1)
- array([ 11.16666667, -5. , -3. , 2. ])
+ array([ 11.16666667, -5. , -3. , 2. ]) # may vary
"""
c = np.array(c, ndmin=1, copy=1)
@@ -1436,7 +1436,7 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None):
warnings can be turned off by
>>> import warnings
- >>> warnings.simplefilter('ignore', RankWarning)
+ >>> warnings.simplefilter('ignore', np.RankWarning)
See Also
--------
@@ -1489,7 +1489,7 @@ def lagfit(x, y, deg, rcond=None, full=False, w=None):
>>> err = np.random.randn(len(x))/10
>>> y = lagval(x, [1, 2, 3]) + err
>>> lagfit(x, y, 2)
- array([ 0.96971004, 2.00193749, 3.00288744])
+ array([ 0.96971004, 2.00193749, 3.00288744]) # may vary
"""
x = np.asarray(x) + 0.0
@@ -1656,7 +1656,7 @@ def lagroots(c):
>>> coef
array([ 2., -8., 12., -6.])
>>> lagroots(coef)
- array([ -4.44089210e-16, 1.00000000e+00, 2.00000000e+00])
+ array([-4.4408921e-16, 1.0000000e+00, 2.0000000e+00])
"""
# c is a trimmed copy
diff --git a/numpy/polynomial/legendre.py b/numpy/polynomial/legendre.py
index e9c24594b..f81bc002c 100644
--- a/numpy/polynomial/legendre.py
+++ b/numpy/polynomial/legendre.py
@@ -136,10 +136,10 @@ def poly2leg(pol):
>>> from numpy import polynomial as P
>>> p = P.Polynomial(np.arange(4))
>>> p
- Polynomial([ 0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
+ Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> c = P.Legendre(P.legendre.poly2leg(p.coef))
>>> c
- Legendre([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1])
+ Legendre([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1]) # may vary
"""
[pol] = pu.as_series([pol])
@@ -183,12 +183,13 @@ def leg2poly(c):
Examples
--------
+ >>> from numpy import polynomial as P
>>> c = P.Legendre(range(4))
>>> c
- Legendre([ 0., 1., 2., 3.], [-1., 1.])
+ Legendre([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1])
>>> p = c.convert(kind=P.Polynomial)
>>> p
- Polynomial([-1. , -3.5, 3. , 7.5], [-1., 1.])
+ Polynomial([-1. , -3.5, 3. , 7.5], domain=[-1., 1.], window=[-1., 1.])
>>> P.leg2poly(range(4))
array([-1. , -3.5, 3. , 7.5])
@@ -310,7 +311,7 @@ def legfromroots(roots):
array([ 0. , -0.4, 0. , 0.4])
>>> j = complex(0,1)
>>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis
- array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j])
+ array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j]) # may vary
"""
if len(roots) == 0:
@@ -366,7 +367,7 @@ def legadd(c1, c2):
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legadd(c1,c2)
- array([ 4., 4., 4.])
+ array([4., 4., 4.])
"""
# c1, c2 are trimmed copies
@@ -468,7 +469,7 @@ def legmulx(c):
--------
>>> from numpy.polynomial import legendre as L
>>> L.legmulx([1,2,3])
- array([ 0.66666667, 2.2, 1.33333333, 1.8])
+ array([ 0.66666667, 2.2, 1.33333333, 1.8]) # may vary
"""
# c is a trimmed copy
@@ -525,8 +526,8 @@ def legmul(c1, c2):
>>> from numpy.polynomial import legendre as L
>>> c1 = (1,2,3)
>>> c2 = (3,2)
- >>> P.legmul(c1,c2) # multiplication requires "reprojection"
- array([ 4.33333333, 10.4 , 11.66666667, 3.6 ])
+ >>> L.legmul(c1,c2) # multiplication requires "reprojection"
+ array([ 4.33333333, 10.4 , 11.66666667, 3.6 ]) # may vary
"""
# s1, s2 are trimmed copies
@@ -597,10 +598,10 @@ def legdiv(c1, c2):
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> L.legdiv(c1,c2) # quotient "intuitive," remainder not
- (array([ 3.]), array([-8., -4.]))
+ (array([3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> L.legdiv(c2,c1) # neither "intuitive"
- (array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852]))
+ (array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852])) # may vary
"""
# c1, c2 are trimmed copies
@@ -729,7 +730,7 @@ def legder(c, m=1, scl=1, axis=0):
>>> L.legder(c)
array([ 6., 9., 20.])
>>> L.legder(c, 3)
- array([ 60.])
+ array([60.])
>>> L.legder(c, scl=-1)
array([ -6., -9., -20.])
>>> L.legder(c, 2,-1)
@@ -845,16 +846,16 @@ def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
>>> from numpy.polynomial import legendre as L
>>> c = (1,2,3)
>>> L.legint(c)
- array([ 0.33333333, 0.4 , 0.66666667, 0.6 ])
+ array([ 0.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
>>> L.legint(c, 3)
- array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02,
- -1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
+ array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02, # may vary
+ -1.73472348e-18, 1.90476190e-02, 9.52380952e-03])
>>> L.legint(c, k=3)
- array([ 3.33333333, 0.4 , 0.66666667, 0.6 ])
+ array([ 3.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
>>> L.legint(c, lbnd=-2)
- array([ 7.33333333, 0.4 , 0.66666667, 0.6 ])
+ array([ 7.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary
>>> L.legint(c, scl=2)
- array([ 0.66666667, 0.8 , 1.33333333, 1.2 ])
+ array([ 0.66666667, 0.8 , 1.33333333, 1.2 ]) # may vary
"""
c = np.array(c, ndmin=1, copy=1)
@@ -1476,7 +1477,7 @@ def legfit(x, y, deg, rcond=None, full=False, w=None):
warnings can be turned off by
>>> import warnings
- >>> warnings.simplefilter('ignore', RankWarning)
+ >>> warnings.simplefilter('ignore', np.RankWarning)
See Also
--------
@@ -1686,7 +1687,7 @@ def legroots(c):
--------
>>> import numpy.polynomial.legendre as leg
>>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots
- array([-0.85099543, -0.11407192, 0.51506735])
+ array([-0.85099543, -0.11407192, 0.51506735]) # may vary
"""
# c is a trimmed copy
diff --git a/numpy/polynomial/polynomial.py b/numpy/polynomial/polynomial.py
index 259cd31f5..69599e3fd 100644
--- a/numpy/polynomial/polynomial.py
+++ b/numpy/polynomial/polynomial.py
@@ -185,7 +185,7 @@ def polyfromroots(roots):
array([ 0., -1., 0., 1.])
>>> j = complex(0,1)
>>> P.polyfromroots((-j,j)) # complex returned, though values are real
- array([ 1.+0.j, 0.+0.j, 1.+0.j])
+ array([1.+0.j, 0.+0.j, 1.+0.j])
"""
if len(roots) == 0:
@@ -233,7 +233,7 @@ def polyadd(c1, c2):
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> sum = P.polyadd(c1,c2); sum
- array([ 4., 4., 4.])
+ array([4., 4., 4.])
>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
28.0
@@ -401,9 +401,9 @@ def polydiv(c1, c2):
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polydiv(c1,c2)
- (array([ 3.]), array([-8., -4.]))
+ (array([3.]), array([-8., -4.]))
>>> P.polydiv(c2,c1)
- (array([ 0.33333333]), array([ 2.66666667, 1.33333333]))
+ (array([ 0.33333333]), array([ 2.66666667, 1.33333333])) # may vary
"""
# c1, c2 are trimmed copies
@@ -529,7 +529,7 @@ def polyder(c, m=1, scl=1, axis=0):
>>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
array([ 2., 6., 12.])
>>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
- array([ 24.])
+ array([24.])
>>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
array([ -2., -6., -12.])
>>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
@@ -636,14 +636,14 @@ def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3)
>>> P.polyint(c) # should return array([0, 1, 1, 1])
- array([ 0., 1., 1., 1.])
+ array([0., 1., 1., 1.])
>>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
- array([ 0. , 0. , 0. , 0.16666667, 0.08333333,
- 0.05 ])
+ array([ 0. , 0. , 0. , 0.16666667, 0.08333333, # may vary
+ 0.05 ])
>>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
- array([ 3., 1., 1., 1.])
+ array([3., 1., 1., 1.])
>>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
- array([ 6., 1., 1., 1.])
+ array([6., 1., 1., 1.])
>>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
array([ 0., -2., -2., -2.])
@@ -761,17 +761,17 @@ def polyval(x, c, tensor=True):
array([[0, 1],
[2, 3]])
>>> polyval(a, [1,2,3])
- array([[ 1., 6.],
- [ 17., 34.]])
+ array([[ 1., 6.],
+ [17., 34.]])
>>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
>>> coef
array([[0, 1],
[2, 3]])
>>> polyval([1,2], coef, tensor=True)
- array([[ 2., 4.],
- [ 4., 7.]])
+ array([[2., 4.],
+ [4., 7.]])
>>> polyval([1,2], coef, tensor=False)
- array([ 2., 7.])
+ array([2., 7.])
"""
c = np.array(c, ndmin=1, copy=0)
@@ -851,8 +851,8 @@ def polyvalfromroots(x, r, tensor=True):
array([[0, 1],
[2, 3]])
>>> polyvalfromroots(a, [-1, 0, 1])
- array([[ -0., 0.],
- [ 6., 24.]])
+ array([[-0., 0.],
+ [ 6., 24.]])
>>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
>>> r # each column of r defines one polynomial
array([[-2, -1],
@@ -1363,7 +1363,7 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None):
be turned off by:
>>> import warnings
- >>> warnings.simplefilter('ignore', RankWarning)
+ >>> warnings.simplefilter('ignore', np.RankWarning)
See Also
--------
@@ -1410,26 +1410,27 @@ def polyfit(x, y, deg, rcond=None, full=False, w=None):
Examples
--------
+ >>> np.random.seed(123)
>>> from numpy.polynomial import polynomial as P
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
>>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
>>> c, stats = P.polyfit(x,y,3,full=True)
+ >>> np.random.seed(123)
>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
- array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286])
+ array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286]) # may vary
>>> stats # note the large SSR, explaining the rather poor results
- [array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316,
- 0.28853036]), 1.1324274851176597e-014]
+ [array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316, # may vary
+ 0.28853036]), 1.1324274851176597e-014]
Same thing without the added noise
>>> y = x**3 - x
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
- array([ -1.73362882e-17, -1.00000000e+00, -2.67471909e-16,
- 1.00000000e+00])
+ array([-6.36925336e-18, -1.00000000e+00, -4.08053781e-16, 1.00000000e+00])
>>> stats # note the minuscule SSR
- [array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158,
- 0.50443316, 0.28853036]), 1.1324274851176597e-014]
+ [array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158, # may vary
+ 0.50443316, 0.28853036]), 1.1324274851176597e-014]
"""
x = np.asarray(x) + 0.0
@@ -1591,7 +1592,7 @@ def polyroots(c):
dtype('float64')
>>> j = complex(0,1)
>>> poly.polyroots(poly.polyfromroots((-j,0,j)))
- array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j])
+ array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) # may vary
"""
# c is a trimmed copy
diff --git a/numpy/polynomial/polyutils.py b/numpy/polynomial/polyutils.py
index c1ed0c9b3..eff4a8ee1 100644
--- a/numpy/polynomial/polyutils.py
+++ b/numpy/polynomial/polyutils.py
@@ -156,19 +156,19 @@ def as_series(alist, trim=True):
>>> from numpy.polynomial import polyutils as pu
>>> a = np.arange(4)
>>> pu.as_series(a)
- [array([ 0.]), array([ 1.]), array([ 2.]), array([ 3.])]
+ [array([0.]), array([1.]), array([2.]), array([3.])]
>>> b = np.arange(6).reshape((2,3))
>>> pu.as_series(b)
- [array([ 0., 1., 2.]), array([ 3., 4., 5.])]
+ [array([0., 1., 2.]), array([3., 4., 5.])]
>>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
- [array([ 1.]), array([ 0., 1., 2.]), array([ 0., 1.])]
+ [array([1.]), array([0., 1., 2.]), array([0., 1.])]
>>> pu.as_series([2, [1.1, 0.]])
- [array([ 2.]), array([ 1.1])]
+ [array([2.]), array([1.1])]
>>> pu.as_series([2, [1.1, 0.]], trim=False)
- [array([ 2.]), array([ 1.1, 0. ])]
+ [array([2.]), array([1.1, 0. ])]
"""
arrays = [np.array(a, ndmin=1, copy=0) for a in alist]
@@ -233,12 +233,12 @@ def trimcoef(c, tol=0):
--------
>>> from numpy.polynomial import polyutils as pu
>>> pu.trimcoef((0,0,3,0,5,0,0))
- array([ 0., 0., 3., 0., 5.])
+ array([0., 0., 3., 0., 5.])
>>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
- array([ 0.])
+ array([0.])
>>> i = complex(0,1) # works for complex
>>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
- array([ 0.0003+0.j , 0.0010-0.001j])
+ array([0.0003+0.j , 0.001 -0.001j])
"""
if tol < 0:
@@ -332,10 +332,10 @@ def mapparms(old, new):
>>> pu.mapparms((-1,1),(-1,1))
(0.0, 1.0)
>>> pu.mapparms((1,-1),(-1,1))
- (0.0, -1.0)
+ (-0.0, -1.0)
>>> i = complex(0,1)
>>> pu.mapparms((-i,-1),(1,i))
- ((1+1j), (1+0j))
+ ((1+1j), (1-0j))
"""
oldlen = old[1] - old[0]
@@ -390,10 +390,10 @@ def mapdomain(x, old, new):
>>> x = np.linspace(-1,1,6); x
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ])
>>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
- array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825,
+ array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825, # may vary
6.28318531])
>>> x - pu.mapdomain(x_out, new_domain, old_domain)
- array([ 0., 0., 0., 0., 0., 0.])
+ array([0., 0., 0., 0., 0., 0.])
Also works for complex numbers (and thus can be used to map any line in
the complex plane to any other line therein).
@@ -402,9 +402,9 @@ def mapdomain(x, old, new):
>>> old = (-1 - i, 1 + i)
>>> new = (-1 + i, 1 - i)
>>> z = np.linspace(old[0], old[1], 6); z
- array([-1.0-1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1.0+1.j ])
- >>> new_z = P.mapdomain(z, old, new); new_z
- array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ])
+ array([-1. -1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1. +1.j ])
+ >>> new_z = pu.mapdomain(z, old, new); new_z
+ array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ]) # may vary
"""
x = np.asanyarray(x)
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx
index 21bc73e54..e4a401b24 100644
--- a/numpy/random/mtrand/mtrand.pyx
+++ b/numpy/random/mtrand/mtrand.pyx
@@ -1,3 +1,5 @@
+# cython: language_level=3
+
# mtrand.pyx -- A Pyrex wrapper of Jean-Sebastien Roy's RandomKit
#
# Copyright 2005 Robert Kern (robert.kern@gmail.com)
@@ -844,16 +846,16 @@ cdef class RandomState:
Examples
--------
>>> np.random.random_sample()
- 0.47108547995356098
+ 0.47108547995356098 # random
>>> type(np.random.random_sample())
- <type 'float'>
+ <class 'float'>
>>> np.random.random_sample((5,))
- array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])
+ array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random
Three-by-two array of random numbers from [-5, 0):
>>> 5 * np.random.random_sample((3, 2)) - 5
- array([[-3.99149989, -0.52338984],
+ array([[-3.99149989, -0.52338984], # random
[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])
@@ -954,14 +956,14 @@ cdef class RandomState:
Examples
--------
>>> np.random.randint(2, size=10)
- array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
+ array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Generate a 2 x 4 array of ints between 0 and 4, inclusive:
>>> np.random.randint(5, size=(2, 4))
- array([[4, 0, 2, 1],
+ array([[4, 0, 2, 1], # random
[3, 2, 2, 0]])
"""
@@ -1076,34 +1078,34 @@ cdef class RandomState:
Generate a uniform random sample from np.arange(5) of size 3:
>>> np.random.choice(5, 3)
- array([0, 3, 4])
+ array([0, 3, 4]) # random
>>> #This is equivalent to np.random.randint(0,5,3)
Generate a non-uniform random sample from np.arange(5) of size 3:
>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
- array([3, 3, 0])
+ array([3, 3, 0]) # random
Generate a uniform random sample from np.arange(5) of size 3 without
replacement:
>>> np.random.choice(5, 3, replace=False)
- array([3,1,0])
+ array([3,1,0]) # random
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]
Generate a non-uniform random sample from np.arange(5) of size
3 without replacement:
>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
- array([2, 3, 0])
+ array([2, 3, 0]) # random
Any of the above can be repeated with an arbitrary array-like
instead of just integers. For instance:
>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
- array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],
- dtype='|S11')
+ array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
+ dtype='<U11')
"""
@@ -1470,11 +1472,11 @@ cdef class RandomState:
Examples
--------
>>> np.random.random_integers(5)
- 4
+ 4 # random
>>> type(np.random.random_integers(5))
- <type 'int'>
+ <class 'numpy.int64'>
>>> np.random.random_integers(5, size=(3,2))
- array([[5, 4],
+ array([[5, 4], # random
[3, 3],
[4, 5]])
@@ -1483,7 +1485,7 @@ cdef class RandomState:
:math:`{0, 5/8, 10/8, 15/8, 20/8}`):
>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
- array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ])
+ array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) # random
Roll two six sided dice 1000 times and sum the results:
@@ -2068,8 +2070,8 @@ cdef class RandomState:
The lower bound for the top 1% of the samples is :
- >>> sort(s)[-10]
- 7.61988120985
+ >>> np.sort(s)[-10]
+ 7.61988120985 # random
So there is about a 1% chance that the F statistic will exceed 7.62,
the measured value is 36, so the null hypothesis is rejected at the 1%
@@ -2166,6 +2168,8 @@ cdef class RandomState:
>>> NF = np.histogram(nc_vals, bins=50, density=True)
>>> c_vals = np.random.f(dfnum, dfden, 1000000)
>>> F = np.histogram(c_vals, bins=50, density=True)
+ >>> import matplotlib
+ >>> import matplotlib.pyplot as plt
>>> plt.plot(F[1][1:], F[0])
>>> plt.plot(NF[1][1:], NF[0])
>>> plt.show()
@@ -2261,7 +2265,7 @@ cdef class RandomState:
Examples
--------
>>> np.random.chisquare(2,4)
- array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272])
+ array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random
"""
cdef ndarray odf
@@ -2443,6 +2447,8 @@ cdef class RandomState:
--------
Draw samples and plot the distribution:
+ >>> import matplotlib
+ >>> import matplotlib.pyplot as plt
>>> s = np.random.standard_cauchy(1000000)
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well
>>> plt.hist(s, bins=100)
@@ -3279,12 +3285,14 @@ cdef class RandomState:
>>> loc, scale = 10, 1
>>> s = np.random.logistic(loc, scale, 10000)
+ >>> import matplotlib
+ >>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, bins=50)
# plot against distribution
>>> def logist(x, loc, scale):
- ... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
+ ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\\
... logist(bins, loc, scale).max())
>>> plt.show()
@@ -3479,6 +3487,8 @@ cdef class RandomState:
--------
Draw values from the distribution and plot the histogram
+ >>> import matplotlib
+ >>> from matplotlib.pyplot import hist
>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)
Wave heights tend to follow a Rayleigh distribution. If the mean wave
@@ -3492,7 +3502,7 @@ cdef class RandomState:
The percentage of waves larger than 3 meters is:
>>> 100.*sum(s>3)/1000000.
- 0.087300000000000003
+ 0.087300000000000003 # random
"""
cdef ndarray oscale
@@ -3873,9 +3883,9 @@ cdef class RandomState:
single success after drilling 5 wells, after 6 wells, etc.?
>>> s = np.random.negative_binomial(1, 0.1, 100000)
- >>> for i in range(1, 11):
+ >>> for i in range(1, 11): # doctest: +SKIP
... probability = sum(s<i) / 100000.
- ... print i, "wells drilled, probability of one success =", probability
+ ... print(i, "wells drilled, probability of one success =", probability)
"""
cdef ndarray on
@@ -4233,6 +4243,8 @@ cdef class RandomState:
>>> ngood, nbad, nsamp = 100, 2, 10
# number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
+ >>> import matplotlib
+ >>> from matplotlib.pyplot import hist
>>> hist(s)
# note that it is very unlikely to grab both bad items
@@ -4342,14 +4354,16 @@ cdef class RandomState:
>>> a = .6
>>> s = np.random.logseries(a, 10000)
+ >>> import matplotlib
+ >>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s)
# plot against distribution
>>> def logseries(k, p):
- ... return -p**k/(k*log(1-p))
+ ... return -p**k/(k*np.log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/
- logseries(bins, a).max(), 'r')
+ ... logseries(bins, a).max(), 'r')
>>> plt.show()
"""
@@ -4474,7 +4488,7 @@ cdef class RandomState:
standard deviation:
>>> list((x[0,0,:] - mean) < 0.6)
- [True, True]
+ [True, True] # random
"""
from numpy.dual import svd
@@ -4580,14 +4594,14 @@ cdef class RandomState:
Throw a dice 20 times:
>>> np.random.multinomial(20, [1/6.]*6, size=1)
- array([[4, 1, 7, 5, 2, 1]])
+ array([[4, 1, 7, 5, 2, 1]]) # random
It landed 4 times on 1, once on 2, etc.
Now, throw the dice 20 times, and 20 times again:
>>> np.random.multinomial(20, [1/6.]*6, size=2)
- array([[3, 4, 3, 3, 4, 3],
+ array([[3, 4, 3, 3, 4, 3], # random
[2, 4, 3, 4, 0, 7]])
For the first run, we threw 3 times 1, 4 times 2, etc. For the second,
@@ -4596,7 +4610,7 @@ cdef class RandomState:
A loaded die is more likely to land on number 6:
>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
- array([11, 16, 14, 17, 16, 26])
+ array([11, 16, 14, 17, 16, 26]) # random
The probability inputs should be normalized. As an implementation
detail, the value of the last entry is ignored and assumed to take
@@ -4605,7 +4619,7 @@ cdef class RandomState:
other should be sampled like so:
>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT
- array([38, 62])
+ array([38, 62]) # random
not like:
@@ -4710,6 +4724,8 @@ cdef class RandomState:
>>> s = np.random.dirichlet((10, 5, 3), 20).transpose()
+ >>> import matplotlib
+ >>> import matplotlib.pyplot as plt
>>> plt.barh(range(20), s[0])
>>> plt.barh(range(20), s[1], left=s[0], color='g')
>>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
@@ -4798,14 +4814,14 @@ cdef class RandomState:
>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
- [1 7 5 2 9 4 3 6 0 8]
+ [1 7 5 2 9 4 3 6 0 8] # random
Multi-dimensional arrays are only shuffled along the first axis:
>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
- array([[3, 4, 5],
+ array([[3, 4, 5], # random
[6, 7, 8],
[0, 1, 2]])
@@ -4885,14 +4901,14 @@ cdef class RandomState:
Examples
--------
>>> np.random.permutation(10)
- array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])
+ array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random
>>> np.random.permutation([1, 4, 9, 12, 15])
- array([15, 1, 9, 4, 12])
+ array([15, 1, 9, 4, 12]) # random
>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
- array([[6, 7, 8],
+ array([[6, 7, 8], # random
[0, 1, 2],
[3, 4, 5]])
diff --git a/numpy/random/mtrand/numpy.pxd b/numpy/random/mtrand/numpy.pxd
index 9092fa113..1b4fe6c10 100644
--- a/numpy/random/mtrand/numpy.pxd
+++ b/numpy/random/mtrand/numpy.pxd
@@ -1,3 +1,5 @@
+# cython: language_level=3
+
# :Author: Travis Oliphant
from cpython.exc cimport PyErr_Print
diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py
index 55306e499..4059f6ee6 100644
--- a/numpy/testing/_private/utils.py
+++ b/numpy/testing/_private/utils.py
@@ -521,7 +521,6 @@ def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True):
...
<type 'exceptions.AssertionError'>:
Arrays are not almost equal
- <BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 2.33333333])
y: array([ 1. , 2.33333334])
@@ -854,7 +853,6 @@ def assert_array_equal(x, y, err_msg='', verbose=True):
<type 'exceptions.ValueError'>:
AssertionError:
Arrays are not equal
- <BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 3.14159265, NaN])
y: array([ 1. , 3.14159265, NaN])
@@ -930,7 +928,6 @@ def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
<type 'exceptions.AssertionError'>:
AssertionError:
Arrays are not almost equal
- <BLANKLINE>
(mismatch 50.0%)
x: array([ 1. , 2.33333, NaN])
y: array([ 1. , 2.33339, NaN])
diff --git a/numpy/tests/test_ctypeslib.py b/numpy/tests/test_ctypeslib.py
index 53b75db07..d389b37a8 100644
--- a/numpy/tests/test_ctypeslib.py
+++ b/numpy/tests/test_ctypeslib.py
@@ -2,6 +2,7 @@ from __future__ import division, absolute_import, print_function
import sys
import pytest
+import weakref
import numpy as np
from numpy.ctypeslib import ndpointer, load_library, as_array
@@ -260,3 +261,15 @@ class TestAsArray(object):
b = np.ctypeslib.as_array(newpnt, (N,))
# now delete both, which should cleanup both objects
del newpnt, b
+
+ def test_segmentation_fault(self):
+ arr = np.zeros((224, 224, 3))
+ c_arr = np.ctypeslib.as_ctypes(arr)
+ arr_ref = weakref.ref(arr)
+ del arr
+
+ # check the reference wasn't cleaned up
+ assert_(arr_ref() is not None)
+
+ # check we avoid the segfault
+ c_arr[0][0][0]