diff options
Diffstat (limited to 'numpy')
| -rw-r--r-- | numpy/linalg/linalg.py | 124 | ||||
| -rw-r--r-- | numpy/linalg/tests/test_linalg.py | 62 | ||||
| -rw-r--r-- | numpy/linalg/umath_linalg.c.src | 750 |
3 files changed, 870 insertions, 66 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py index 10f7f9ae0..2b686839a 100644 --- a/numpy/linalg/linalg.py +++ b/numpy/linalg/linalg.py @@ -99,6 +99,10 @@ def _raise_linalgerror_svd_nonconvergence(err, flag): def _raise_linalgerror_lstsq(err, flag): raise LinAlgError("SVD did not converge in Linear Least Squares") +def _raise_linalgerror_qr(err, flag): + raise LinAlgError("Incorrect argument found while performing " + "QR factorization") + def get_linalg_error_extobj(callback): extobj = list(_linalg_error_extobj) # make a copy extobj[2] = callback @@ -776,15 +780,16 @@ def qr(a, mode='reduced'): Parameters ---------- - a : array_like, shape (M, N) - Matrix to be factored. + a : array_like, shape (..., M, N) + An array-like object with the dimensionality of at least 2. mode : {'reduced', 'complete', 'r', 'raw'}, optional If K = min(M, N), then - * 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) - * 'complete' : returns q, r with dimensions (M, M), (M, N) - * 'r' : returns r only with dimensions (K, N) - * 'raw' : returns h, tau with dimensions (N, M), (K,) + * 'reduced' : returns q, r with dimensions + (..., M, K), (..., K, N) (default) + * 'complete' : returns q, r with dimensions (..., M, M), (..., M, N) + * 'r' : returns r only with dimensions (..., K, N) + * 'raw' : returns h, tau with dimensions (..., N, M), (..., K,) The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, see the notes for more information. The default is 'reduced', and to @@ -803,9 +808,13 @@ def qr(a, mode='reduced'): A matrix with orthonormal columns. When mode = 'complete' the result is an orthogonal/unitary matrix depending on whether or not a is real/complex. The determinant may be either +/- 1 in that - case. + case. In case the number of dimensions in the input array is + greater than 2 then a stack of the matrices with above properties + is returned. r : ndarray of float or complex, optional - The upper-triangular matrix. + The upper-triangular matrix or a stack of upper-triangular + matrices if the number of dimensions in the input array is greater + than 2. (h, tau) : ndarrays of np.double or np.cdouble, optional The array h contains the Householder reflectors that generate q along with r. The tau array contains scaling factors for the @@ -853,6 +862,14 @@ def qr(a, mode='reduced'): >>> r2 = np.linalg.qr(a, mode='r') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True + >>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input + >>> q, r = np.linalg.qr(a) + >>> q.shape + (3, 2, 2) + >>> r.shape + (3, 2, 2) + >>> np.allclose(a, np.matmul(q, r)) + True Example illustrating a common use of `qr`: solving of least squares problems @@ -900,83 +917,58 @@ def qr(a, mode='reduced'): raise ValueError(f"Unrecognized mode '{mode}'") a, wrap = _makearray(a) - _assert_2d(a) - m, n = a.shape + _assert_stacked_2d(a) + m, n = a.shape[-2:] t, result_t = _commonType(a) - a = _fastCopyAndTranspose(t, a) + a = a.astype(t, copy=True) a = _to_native_byte_order(a) mn = min(m, n) - tau = zeros((mn,), t) - if isComplexType(t): - lapack_routine = lapack_lite.zgeqrf - routine_name = 'zgeqrf' + if m <= n: + gufunc = _umath_linalg.qr_r_raw_m else: - lapack_routine = lapack_lite.dgeqrf - routine_name = 'dgeqrf' - - # calculate optimal size of work data 'work' - lwork = 1 - work = zeros((lwork,), t) - results = lapack_routine(m, n, a, max(1, m), tau, work, -1, 0) - if results['info'] != 0: - raise LinAlgError('%s returns %d' % (routine_name, results['info'])) - - # do qr decomposition - lwork = max(1, n, int(abs(work[0]))) - work = zeros((lwork,), t) - results = lapack_routine(m, n, a, max(1, m), tau, work, lwork, 0) - if results['info'] != 0: - raise LinAlgError('%s returns %d' % (routine_name, results['info'])) + gufunc = _umath_linalg.qr_r_raw_n + + signature = 'D->D' if isComplexType(t) else 'd->d' + extobj = get_linalg_error_extobj(_raise_linalgerror_qr) + tau = gufunc(a, signature=signature, extobj=extobj) # handle modes that don't return q if mode == 'r': - r = _fastCopyAndTranspose(result_t, a[:, :mn]) - return wrap(triu(r)) + r = triu(a[..., :mn, :]) + r = r.astype(result_t, copy=False) + return wrap(r) if mode == 'raw': - return a, tau + q = transpose(a) + q = q.astype(result_t, copy=False) + tau = tau.astype(result_t, copy=False) + return wrap(q), tau if mode == 'economic': - if t != result_t : - a = a.astype(result_t, copy=False) - return wrap(a.T) + a = a.astype(result_t, copy=False) + return wrap(a) - # generate q from a + # mc is the number of columns in the resulting q + # matrix. If the mode is complete then it is + # same as number of rows, and if the mode is reduced, + # then it is the minimum of number of rows and columns. if mode == 'complete' and m > n: mc = m - q = empty((m, m), t) + gufunc = _umath_linalg.qr_complete else: mc = mn - q = empty((n, m), t) - q[:n] = a - - if isComplexType(t): - lapack_routine = lapack_lite.zungqr - routine_name = 'zungqr' - else: - lapack_routine = lapack_lite.dorgqr - routine_name = 'dorgqr' + gufunc = _umath_linalg.qr_reduced - # determine optimal lwork - lwork = 1 - work = zeros((lwork,), t) - results = lapack_routine(m, mc, mn, q, max(1, m), tau, work, -1, 0) - if results['info'] != 0: - raise LinAlgError('%s returns %d' % (routine_name, results['info'])) - - # compute q - lwork = max(1, n, int(abs(work[0]))) - work = zeros((lwork,), t) - results = lapack_routine(m, mc, mn, q, max(1, m), tau, work, lwork, 0) - if results['info'] != 0: - raise LinAlgError('%s returns %d' % (routine_name, results['info'])) - - q = _fastCopyAndTranspose(result_t, q[:mc]) - r = _fastCopyAndTranspose(result_t, a[:, :mc]) + signature = 'DD->D' if isComplexType(t) else 'dd->d' + extobj = get_linalg_error_extobj(_raise_linalgerror_qr) + q = gufunc(a, tau, signature=signature, extobj=extobj) + r = triu(a[..., :mc, :]) - return wrap(q), wrap(triu(r)) + q = q.astype(result_t, copy=False) + r = r.astype(result_t, copy=False) + return wrap(q), wrap(r) # Eigenvalues @@ -2173,7 +2165,7 @@ def lstsq(a, b, rcond="warn"): equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Else, `x` minimizes the - Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing + Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing solutions, the one with the smallest 2-norm :math:`||x||` is returned. Parameters diff --git a/numpy/linalg/tests/test_linalg.py b/numpy/linalg/tests/test_linalg.py index c6e8cdd03..4c54c0b53 100644 --- a/numpy/linalg/tests/test_linalg.py +++ b/numpy/linalg/tests/test_linalg.py @@ -1,6 +1,7 @@ """ Test functions for linalg module """ +from numpy.core.fromnumeric import shape import os import sys import itertools @@ -11,6 +12,7 @@ import pytest import numpy as np from numpy import array, single, double, csingle, cdouble, dot, identity, matmul +from numpy.core import swapaxes from numpy import multiply, atleast_2d, inf, asarray from numpy import linalg from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError @@ -1710,6 +1712,66 @@ class TestQR: self.check_qr(m2) self.check_qr(m2.T) + def check_qr_stacked(self, a): + # This test expects the argument `a` to be an ndarray or + # a subclass of an ndarray of inexact type. + a_type = type(a) + a_dtype = a.dtype + m, n = a.shape[-2:] + k = min(m, n) + + # mode == 'complete' + q, r = linalg.qr(a, mode='complete') + assert_(q.dtype == a_dtype) + assert_(r.dtype == a_dtype) + assert_(isinstance(q, a_type)) + assert_(isinstance(r, a_type)) + assert_(q.shape[-2:] == (m, m)) + assert_(r.shape[-2:] == (m, n)) + assert_almost_equal(matmul(q, r), a) + I_mat = np.identity(q.shape[-1]) + stack_I_mat = np.broadcast_to(I_mat, + q.shape[:-2] + (q.shape[-1],)*2) + assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat) + assert_almost_equal(np.triu(r[..., :, :]), r) + + # mode == 'reduced' + q1, r1 = linalg.qr(a, mode='reduced') + assert_(q1.dtype == a_dtype) + assert_(r1.dtype == a_dtype) + assert_(isinstance(q1, a_type)) + assert_(isinstance(r1, a_type)) + assert_(q1.shape[-2:] == (m, k)) + assert_(r1.shape[-2:] == (k, n)) + assert_almost_equal(matmul(q1, r1), a) + I_mat = np.identity(q1.shape[-1]) + stack_I_mat = np.broadcast_to(I_mat, + q1.shape[:-2] + (q1.shape[-1],)*2) + assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1), + stack_I_mat) + assert_almost_equal(np.triu(r1[..., :, :]), r1) + + # mode == 'r' + r2 = linalg.qr(a, mode='r') + assert_(r2.dtype == a_dtype) + assert_(isinstance(r2, a_type)) + assert_almost_equal(r2, r1) + + @pytest.mark.parametrize("size", [ + (3, 4), (4, 3), (4, 4), + (3, 0), (0, 3)]) + @pytest.mark.parametrize("outer_size", [ + (2, 2), (2,), (2, 3, 4)]) + @pytest.mark.parametrize("dt", [ + np.single, np.double, + np.csingle, np.cdouble]) + def test_stacked_inputs(self, outer_size, size, dt): + + A = np.random.normal(size=outer_size + size).astype(dt) + B = np.random.normal(size=outer_size + size).astype(dt) + self.check_qr_stacked(A) + self.check_qr_stacked(A + 1.j*B) + class TestCholesky: # TODO: are there no other tests for cholesky? diff --git a/numpy/linalg/umath_linalg.c.src b/numpy/linalg/umath_linalg.c.src index 1807aadcf..a486e9e5b 100644 --- a/numpy/linalg/umath_linalg.c.src +++ b/numpy/linalg/umath_linalg.c.src @@ -163,6 +163,24 @@ FNAME(zgelsd)(fortran_int *m, fortran_int *n, fortran_int *nrhs, fortran_int *info); extern fortran_int +FNAME(dgeqrf)(fortran_int *m, fortran_int *n, double a[], fortran_int *lda, + double tau[], double work[], + fortran_int *lwork, fortran_int *info); +extern fortran_int +FNAME(zgeqrf)(fortran_int *m, fortran_int *n, f2c_doublecomplex a[], fortran_int *lda, + f2c_doublecomplex tau[], f2c_doublecomplex work[], + fortran_int *lwork, fortran_int *info); + +extern fortran_int +FNAME(dorgqr)(fortran_int *m, fortran_int *n, fortran_int *k, double a[], fortran_int *lda, + double tau[], double work[], + fortran_int *lwork, fortran_int *info); +extern fortran_int +FNAME(zungqr)(fortran_int *m, fortran_int *n, fortran_int *k, f2c_doublecomplex a[], + fortran_int *lda, f2c_doublecomplex tau[], + f2c_doublecomplex work[], fortran_int *lwork, fortran_int *info); + +extern fortran_int FNAME(sgesv)(fortran_int *n, fortran_int *nrhs, float a[], fortran_int *lda, fortran_int ipiv[], @@ -2834,6 +2852,670 @@ static void /**end repeat**/ +/* -------------------------------------------------------------------------- */ + /* qr (modes - r, raw) */ + +typedef struct geqfr_params_struct +{ + fortran_int M; + fortran_int N; + void *A; + fortran_int LDA; + void* TAU; + void *WORK; + fortran_int LWORK; +} GEQRF_PARAMS_t; + + +static inline void +dump_geqrf_params(const char *name, + GEQRF_PARAMS_t *params) +{ + TRACE_TXT("\n%s:\n"\ + + "%14s: %18p\n"\ + "%14s: %18p\n"\ + "%14s: %18p\n"\ + "%14s: %18d\n"\ + "%14s: %18d\n"\ + "%14s: %18d\n"\ + "%14s: %18d\n", + + name, + + "A", params->A, + "TAU", params->TAU, + "WORK", params->WORK, + + "M", (int)params->M, + "N", (int)params->N, + "LDA", (int)params->LDA, + "LWORK", (int)params->LWORK); +} + +/**begin repeat + #lapack_func=dgeqrf,zgeqrf# + */ + +static inline fortran_int +call_@lapack_func@(GEQRF_PARAMS_t *params) +{ + fortran_int rv; + LAPACK(@lapack_func@)(¶ms->M, ¶ms->N, + params->A, ¶ms->LDA, + params->TAU, + params->WORK, ¶ms->LWORK, + &rv); + return rv; +} + +/**end repeat**/ + +/**begin repeat + #TYPE=DOUBLE# + #lapack_func=dgeqrf# + #ftyp=fortran_doublereal# + */ +static inline int +init_@lapack_func@(GEQRF_PARAMS_t *params, + fortran_int m, + fortran_int n) +{ + npy_uint8 *mem_buff = NULL; + npy_uint8 *mem_buff2 = NULL; + npy_uint8 *a, *tau, *work; + fortran_int min_m_n = fortran_int_min(m, n); + size_t safe_min_m_n = min_m_n; + size_t safe_m = m; + size_t safe_n = n; + + size_t a_size = safe_m * safe_n * sizeof(@ftyp@); + size_t tau_size = safe_min_m_n * sizeof(@ftyp@); + + fortran_int work_count; + size_t work_size; + fortran_int lda = fortran_int_max(1, m); + + mem_buff = malloc(a_size + tau_size); + + if (!mem_buff) + goto error; + + a = mem_buff; + tau = a + a_size; + memset(tau, 0, tau_size); + + + params->M = m; + params->N = n; + params->A = a; + params->TAU = tau; + params->LDA = lda; + + { + /* compute optimal work size */ + + @ftyp@ work_size_query; + + params->WORK = &work_size_query; + params->LWORK = -1; + + if (call_@lapack_func@(params) != 0) + goto error; + + work_count = (fortran_int) *(@ftyp@*) params->WORK; + + } + + params->LWORK = fortran_int_max(fortran_int_max(1, n), work_count); + + work_size = (size_t) params->LWORK * sizeof(@ftyp@); + mem_buff2 = malloc(work_size); + if (!mem_buff2) + goto error; + + work = mem_buff2; + + params->WORK = work; + + return 1; + error: + TRACE_TXT("%s failed init\n", __FUNCTION__); + free(mem_buff); + free(mem_buff2); + memset(params, 0, sizeof(*params)); + + return 0; +} + +/**end repeat**/ + +/**begin repeat + #TYPE=CDOUBLE# + #lapack_func=zgeqrf# + #ftyp=fortran_doublecomplex# + */ +static inline int +init_@lapack_func@(GEQRF_PARAMS_t *params, + fortran_int m, + fortran_int n) +{ + npy_uint8 *mem_buff = NULL; + npy_uint8 *mem_buff2 = NULL; + npy_uint8 *a, *tau, *work; + fortran_int min_m_n = fortran_int_min(m, n); + size_t safe_min_m_n = min_m_n; + size_t safe_m = m; + size_t safe_n = n; + + size_t a_size = safe_m * safe_n * sizeof(@ftyp@); + size_t tau_size = safe_min_m_n * sizeof(@ftyp@); + + fortran_int work_count; + size_t work_size; + fortran_int lda = fortran_int_max(1, m); + + mem_buff = malloc(a_size + tau_size); + + if (!mem_buff) + goto error; + + a = mem_buff; + tau = a + a_size; + memset(tau, 0, tau_size); + + + params->M = m; + params->N = n; + params->A = a; + params->TAU = tau; + params->LDA = lda; + + { + /* compute optimal work size */ + + @ftyp@ work_size_query; + + params->WORK = &work_size_query; + params->LWORK = -1; + + if (call_@lapack_func@(params) != 0) + goto error; + + work_count = (fortran_int) ((@ftyp@*)params->WORK)->r; + + } + + params->LWORK = fortran_int_max(fortran_int_max(1, n), + work_count); + + work_size = (size_t) params->LWORK * sizeof(@ftyp@); + + mem_buff2 = malloc(work_size); + if (!mem_buff2) + goto error; + + work = mem_buff2; + + params->WORK = work; + + return 1; + error: + TRACE_TXT("%s failed init\n", __FUNCTION__); + free(mem_buff); + free(mem_buff2); + memset(params, 0, sizeof(*params)); + + return 0; +} + +/**end repeat**/ + +/**begin repeat + #lapack_func=dgeqrf,zgeqrf# + */ +static inline void +release_@lapack_func@(GEQRF_PARAMS_t* params) +{ + /* A and WORK contain allocated blocks */ + free(params->A); + free(params->WORK); + memset(params, 0, sizeof(*params)); +} + +/**end repeat**/ + +/**begin repeat + #TYPE=DOUBLE,CDOUBLE# + #REALTYPE=DOUBLE,DOUBLE# + #lapack_func=dgeqrf,zgeqrf# + #typ = npy_double,npy_cdouble# + #basetyp = npy_double,npy_double# + #ftyp = fortran_doublereal,fortran_doublecomplex# + #cmplx = 0, 1# + */ +static void +@TYPE@_qr_r_raw(char **args, npy_intp const *dimensions, npy_intp const *steps, + void *NPY_UNUSED(func)) +{ + GEQRF_PARAMS_t params; + int error_occurred = get_fp_invalid_and_clear(); + fortran_int n, m; + + INIT_OUTER_LOOP_2 + + m = (fortran_int)dimensions[0]; + n = (fortran_int)dimensions[1]; + + if (init_@lapack_func@(¶ms, m, n)) { + LINEARIZE_DATA_t a_in, tau_out; + + init_linearize_data(&a_in, n, m, steps[1], steps[0]); + init_linearize_data(&tau_out, 1, fortran_int_min(m, n), 1, steps[2]); + + BEGIN_OUTER_LOOP_2 + int not_ok; + linearize_@TYPE@_matrix(params.A, args[0], &a_in); + not_ok = call_@lapack_func@(¶ms); + if (!not_ok) { + delinearize_@TYPE@_matrix(args[0], params.A, &a_in); + delinearize_@TYPE@_matrix(args[1], params.TAU, &tau_out); + } else { + error_occurred = 1; + nan_@TYPE@_matrix(args[1], &tau_out); + } + END_OUTER_LOOP + + release_@lapack_func@(¶ms); + } + + set_fp_invalid_or_clear(error_occurred); +} + +/**end repeat**/ + +/* -------------------------------------------------------------------------- */ + /* qr common code (modes - reduced and complete) */ + +typedef struct gqr_params_struct +{ + fortran_int M; + fortran_int MC; + fortran_int MN; + void* A; + void *Q; + fortran_int LDA; + void* TAU; + void *WORK; + fortran_int LWORK; +} GQR_PARAMS_t; + +/**begin repeat + #lapack_func=dorgqr,zungqr# + */ + +static inline fortran_int +call_@lapack_func@(GQR_PARAMS_t *params) +{ + fortran_int rv; + LAPACK(@lapack_func@)(¶ms->M, ¶ms->MC, ¶ms->MN, + params->Q, ¶ms->LDA, + params->TAU, + params->WORK, ¶ms->LWORK, + &rv); + return rv; +} + +/**end repeat**/ + +/**begin repeat + #lapack_func=dorgqr# + #ftyp=fortran_doublereal# + */ +static inline int +init_@lapack_func@_common(GQR_PARAMS_t *params, + fortran_int m, + fortran_int n, + fortran_int mc) +{ + npy_uint8 *mem_buff = NULL; + npy_uint8 *mem_buff2 = NULL; + npy_uint8 *a, *q, *tau, *work; + fortran_int min_m_n = fortran_int_min(m, n); + size_t safe_mc = mc; + size_t safe_min_m_n = min_m_n; + size_t safe_m = m; + size_t safe_n = n; + size_t a_size = safe_m * safe_n * sizeof(@ftyp@); + size_t q_size = safe_m * safe_mc * sizeof(@ftyp@); + size_t tau_size = safe_min_m_n * sizeof(@ftyp@); + + fortran_int work_count; + size_t work_size; + fortran_int lda = fortran_int_max(1, m); + + mem_buff = malloc(q_size + tau_size + a_size); + + if (!mem_buff) + goto error; + + q = mem_buff; + tau = q + q_size; + a = tau + tau_size; + + + params->M = m; + params->MC = mc; + params->MN = min_m_n; + params->A = a; + params->Q = q; + params->TAU = tau; + params->LDA = lda; + + { + /* compute optimal work size */ + @ftyp@ work_size_query; + + params->WORK = &work_size_query; + params->LWORK = -1; + + if (call_@lapack_func@(params) != 0) + goto error; + + work_count = (fortran_int) *(@ftyp@*) params->WORK; + + } + + params->LWORK = fortran_int_max(fortran_int_max(1, n), work_count); + + work_size = (size_t) params->LWORK * sizeof(@ftyp@); + + mem_buff2 = malloc(work_size); + if (!mem_buff2) + goto error; + + work = mem_buff2; + + params->WORK = work; + + return 1; + error: + TRACE_TXT("%s failed init\n", __FUNCTION__); + free(mem_buff); + free(mem_buff2); + memset(params, 0, sizeof(*params)); + + return 0; +} + +/**end repeat**/ + +/**begin repeat + #lapack_func=zungqr# + #ftyp=fortran_doublecomplex# + */ +static inline int +init_@lapack_func@_common(GQR_PARAMS_t *params, + fortran_int m, + fortran_int n, + fortran_int mc) +{ + npy_uint8 *mem_buff = NULL; + npy_uint8 *mem_buff2 = NULL; + npy_uint8 *a, *q, *tau, *work; + fortran_int min_m_n = fortran_int_min(m, n); + size_t safe_mc = mc; + size_t safe_min_m_n = min_m_n; + size_t safe_m = m; + size_t safe_n = n; + + size_t a_size = safe_m * safe_n * sizeof(@ftyp@); + size_t q_size = safe_m * safe_mc * sizeof(@ftyp@); + size_t tau_size = safe_min_m_n * sizeof(@ftyp@); + + fortran_int work_count; + size_t work_size; + fortran_int lda = fortran_int_max(1, m); + + mem_buff = malloc(q_size + tau_size + a_size); + + if (!mem_buff) + goto error; + + q = mem_buff; + tau = q + q_size; + a = tau + tau_size; + + + params->M = m; + params->MC = mc; + params->MN = min_m_n; + params->A = a; + params->Q = q; + params->TAU = tau; + params->LDA = lda; + + { + /* compute optimal work size */ + @ftyp@ work_size_query; + + params->WORK = &work_size_query; + params->LWORK = -1; + + if (call_@lapack_func@(params) != 0) + goto error; + + work_count = (fortran_int) ((@ftyp@*)params->WORK)->r; + + } + + params->LWORK = fortran_int_max(fortran_int_max(1, n), + work_count); + + work_size = (size_t) params->LWORK * sizeof(@ftyp@); + + mem_buff2 = malloc(work_size); + if (!mem_buff2) + goto error; + + work = mem_buff2; + + params->WORK = work; + params->LWORK = work_count; + + return 1; + error: + TRACE_TXT("%s failed init\n", __FUNCTION__); + free(mem_buff); + free(mem_buff2); + memset(params, 0, sizeof(*params)); + + return 0; +} + +/**end repeat**/ + +/* -------------------------------------------------------------------------- */ + /* qr (modes - reduced) */ + + +static inline void +dump_gqr_params(const char *name, + GQR_PARAMS_t *params) +{ + TRACE_TXT("\n%s:\n"\ + + "%14s: %18p\n"\ + "%14s: %18p\n"\ + "%14s: %18p\n"\ + "%14s: %18d\n"\ + "%14s: %18d\n"\ + "%14s: %18d\n"\ + "%14s: %18d\n"\ + "%14s: %18d\n", + + name, + + "Q", params->Q, + "TAU", params->TAU, + "WORK", params->WORK, + + "M", (int)params->M, + "MC", (int)params->MC, + "MN", (int)params->MN, + "LDA", (int)params->LDA, + "LWORK", (int)params->LWORK); +} + +/**begin repeat + #lapack_func=dorgqr,zungqr# + #ftyp=fortran_doublereal,fortran_doublecomplex# + */ +static inline int +init_@lapack_func@(GQR_PARAMS_t *params, + fortran_int m, + fortran_int n) +{ + return init_@lapack_func@_common( + params, m, n, + fortran_int_min(m, n)); +} + +/**end repeat**/ + +/**begin repeat + #lapack_func=dorgqr,zungqr# + */ +static inline void +release_@lapack_func@(GQR_PARAMS_t* params) +{ + /* A and WORK contain allocated blocks */ + free(params->Q); + free(params->WORK); + memset(params, 0, sizeof(*params)); +} + +/**end repeat**/ + +/**begin repeat + #TYPE=DOUBLE,CDOUBLE# + #REALTYPE=DOUBLE,DOUBLE# + #lapack_func=dorgqr,zungqr# + #typ = npy_double, npy_cdouble# + #basetyp = npy_double, npy_double# + #ftyp = fortran_doublereal,fortran_doublecomplex# + #cmplx = 0, 1# + */ +static void +@TYPE@_qr_reduced(char **args, npy_intp const *dimensions, npy_intp const *steps, + void *NPY_UNUSED(func)) +{ + GQR_PARAMS_t params; + int error_occurred = get_fp_invalid_and_clear(); + fortran_int n, m; + + INIT_OUTER_LOOP_3 + + m = (fortran_int)dimensions[0]; + n = (fortran_int)dimensions[1]; + + if (init_@lapack_func@(¶ms, m, n)) { + LINEARIZE_DATA_t a_in, tau_in, q_out; + + init_linearize_data(&a_in, n, m, steps[1], steps[0]); + init_linearize_data(&tau_in, 1, fortran_int_min(m, n), 1, steps[2]); + init_linearize_data(&q_out, fortran_int_min(m, n), m, steps[4], steps[3]); + + BEGIN_OUTER_LOOP_3 + int not_ok; + linearize_@TYPE@_matrix(params.A, args[0], &a_in); + linearize_@TYPE@_matrix(params.Q, args[0], &a_in); + linearize_@TYPE@_matrix(params.TAU, args[1], &tau_in); + not_ok = call_@lapack_func@(¶ms); + if (!not_ok) { + delinearize_@TYPE@_matrix(args[2], params.Q, &q_out); + } else { + error_occurred = 1; + nan_@TYPE@_matrix(args[2], &q_out); + } + END_OUTER_LOOP + + release_@lapack_func@(¶ms); + } + + set_fp_invalid_or_clear(error_occurred); +} + +/**end repeat**/ + +/* -------------------------------------------------------------------------- */ + /* qr (modes - complete) */ + +/**begin repeat + #lapack_func=dorgqr,zungqr# + #ftyp=fortran_doublereal,fortran_doublecomplex# + */ +static inline int +init_@lapack_func@_complete(GQR_PARAMS_t *params, + fortran_int m, + fortran_int n) +{ + return init_@lapack_func@_common(params, m, n, m); +} + +/**end repeat**/ + +/**begin repeat + #TYPE=DOUBLE,CDOUBLE# + #REALTYPE=DOUBLE,DOUBLE# + #lapack_func=dorgqr,zungqr# + #typ = npy_double,npy_cdouble# + #basetyp = npy_double,npy_double# + #ftyp = fortran_doublereal,fortran_doublecomplex# + #cmplx = 0, 1# + */ +static void +@TYPE@_qr_complete(char **args, npy_intp const *dimensions, npy_intp const *steps, + void *NPY_UNUSED(func)) +{ + GQR_PARAMS_t params; + int error_occurred = get_fp_invalid_and_clear(); + fortran_int n, m; + + INIT_OUTER_LOOP_3 + + m = (fortran_int)dimensions[0]; + n = (fortran_int)dimensions[1]; + + + if (init_@lapack_func@_complete(¶ms, m, n)) { + LINEARIZE_DATA_t a_in, tau_in, q_out; + + init_linearize_data(&a_in, n, m, steps[1], steps[0]); + init_linearize_data(&tau_in, 1, fortran_int_min(m, n), 1, steps[2]); + init_linearize_data(&q_out, m, m, steps[4], steps[3]); + + BEGIN_OUTER_LOOP_3 + int not_ok; + linearize_@TYPE@_matrix(params.A, args[0], &a_in); + linearize_@TYPE@_matrix(params.Q, args[0], &a_in); + linearize_@TYPE@_matrix(params.TAU, args[1], &tau_in); + not_ok = call_@lapack_func@(¶ms); + if (!not_ok) { + delinearize_@TYPE@_matrix(args[2], params.Q, &q_out); + } else { + error_occurred = 1; + nan_@TYPE@_matrix(args[2], &q_out); + } + END_OUTER_LOOP + + release_@lapack_func@(¶ms); + } + + set_fp_invalid_or_clear(error_occurred); +} + +/**end repeat**/ /* -------------------------------------------------------------------------- */ /* least squares */ @@ -3291,6 +3973,17 @@ static void *array_of_nulls[] = { CDOUBLE_ ## NAME \ } +/* The single precision functions are not used at all, + * due to input data being promoted to double precision + * in Python, so they are not implemented here. + */ +#define GUFUNC_FUNC_ARRAY_QR(NAME) \ + static PyUFuncGenericFunction \ + FUNC_ARRAY_NAME(NAME)[] = { \ + DOUBLE_ ## NAME, \ + CDOUBLE_ ## NAME \ + } + GUFUNC_FUNC_ARRAY_REAL_COMPLEX(slogdet); GUFUNC_FUNC_ARRAY_REAL_COMPLEX(det); @@ -3305,6 +3998,9 @@ GUFUNC_FUNC_ARRAY_REAL_COMPLEX(cholesky_lo); GUFUNC_FUNC_ARRAY_REAL_COMPLEX(svd_N); GUFUNC_FUNC_ARRAY_REAL_COMPLEX(svd_S); GUFUNC_FUNC_ARRAY_REAL_COMPLEX(svd_A); +GUFUNC_FUNC_ARRAY_QR(qr_r_raw); +GUFUNC_FUNC_ARRAY_QR(qr_reduced); +GUFUNC_FUNC_ARRAY_QR(qr_complete); GUFUNC_FUNC_ARRAY_REAL_COMPLEX(lstsq); GUFUNC_FUNC_ARRAY_EIG(eig); GUFUNC_FUNC_ARRAY_EIG(eigvals); @@ -3371,6 +4067,24 @@ static char svd_1_3_types[] = { NPY_CDOUBLE, NPY_CDOUBLE, NPY_DOUBLE, NPY_CDOUBLE }; +/* A, tau */ +static char qr_r_raw_types[] = { + NPY_DOUBLE, NPY_DOUBLE, + NPY_CDOUBLE, NPY_CDOUBLE, +}; + +/* A, tau, q */ +static char qr_reduced_types[] = { + NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, + NPY_CDOUBLE, NPY_CDOUBLE, NPY_CDOUBLE, +}; + +/* A, tau, q */ +static char qr_complete_types[] = { + NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, + NPY_CDOUBLE, NPY_CDOUBLE, NPY_CDOUBLE, +}; + /* A, b, rcond, x, resid, rank, s, */ static char lstsq_types[] = { NPY_FLOAT, NPY_FLOAT, NPY_FLOAT, NPY_FLOAT, NPY_FLOAT, NPY_INT, NPY_FLOAT, @@ -3571,6 +4285,42 @@ GUFUNC_DESCRIPTOR_t gufunc_descriptors [] = { eigvals_types }, { + "qr_r_raw_m", + "(m,n)->(m)", + "Compute TAU vector for the last two dimensions \n"\ + "and broadcast to the rest. For m <= n. \n", + 2, 1, 1, + FUNC_ARRAY_NAME(qr_r_raw), + qr_r_raw_types + }, + { + "qr_r_raw_n", + "(m,n)->(n)", + "Compute TAU vector for the last two dimensions \n"\ + "and broadcast to the rest. For m > n. \n", + 2, 1, 1, + FUNC_ARRAY_NAME(qr_r_raw), + qr_r_raw_types + }, + { + "qr_reduced", + "(m,n),(k)->(m,k)", + "Compute Q matrix for the last two dimensions \n"\ + "and broadcast to the rest. \n", + 2, 2, 1, + FUNC_ARRAY_NAME(qr_reduced), + qr_reduced_types + }, + { + "qr_complete", + "(m,n),(n)->(m,m)", + "Compute Q matrix for the last two dimensions \n"\ + "and broadcast to the rest. For m > n. \n", + 2, 2, 1, + FUNC_ARRAY_NAME(qr_complete), + qr_complete_types + }, + { "lstsq_m", "(m,n),(m,nrhs),()->(n,nrhs),(nrhs),(),(m)", "least squares on the last two dimensions and broadcast to the rest. \n"\ |
