diff options
Diffstat (limited to 'numpy')
-rw-r--r-- | numpy/core/_add_newdocs.py | 8 | ||||
-rw-r--r-- | numpy/core/_internal.py | 47 | ||||
-rw-r--r-- | numpy/core/tests/test_multiarray.py | 40 | ||||
-rw-r--r-- | numpy/ma/tests/test_core.py | 4 |
4 files changed, 82 insertions, 17 deletions
diff --git a/numpy/core/_add_newdocs.py b/numpy/core/_add_newdocs.py index ea472f1b3..b118a24db 100644 --- a/numpy/core/_add_newdocs.py +++ b/numpy/core/_add_newdocs.py @@ -2127,14 +2127,6 @@ add_newdoc('numpy.core.multiarray', 'ndarray', ('ctypes', .. automethod:: numpy.core._internal._ctypes.strides_as - Be careful using the ctypes attribute - especially on temporary - arrays or arrays constructed on the fly. For example, calling - ``(a+b).ctypes.data_as(ctypes.c_void_p)`` returns a pointer to memory - that is invalid because the array created as (a+b) is deallocated - before the next Python statement. You can avoid this problem using - either ``c=a+b`` or ``ct=(a+b).ctypes``. In the latter case, ct will - hold a reference to the array until ct is deleted or re-assigned. - If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but ctypes objects are not returned and errors may be raised instead. In particular, diff --git a/numpy/core/_internal.py b/numpy/core/_internal.py index 30069f0ca..e4885ce61 100644 --- a/numpy/core/_internal.py +++ b/numpy/core/_internal.py @@ -237,19 +237,45 @@ _getintp_ctype.cache = None class _missing_ctypes(object): def cast(self, num, obj): - return num + return obj.value + + class c_void_p(object): + def __init__(self, ptr): + self.value = ptr + + + +def _get_void_ptr(arr): + """ + Get a `ctypes.c_void_p` to arr.data, that keeps a reference to the array + """ + import numpy as np + # don't let subclasses interfere + arr = arr.view(ndarray) + # collapse the array to point to at most 1 element, so it become contiguous + arr = arr[np.s_[:1,] * arr.ndim + np.s_[...,]] + # then convert to ctypes now that we've reduced it to a simple, empty, array + arr.flags.writeable = True + arr = (ctypes.c_char * 0).from_buffer(arr) + # finally cast to void* + return ctypes.cast(ctypes.pointer(arr), ctypes.c_void_p) - def c_void_p(self, num): - return num class _ctypes(object): def __init__(self, array, ptr=None): + self._arr = array + if ctypes: self._ctypes = ctypes + # get a void pointer to the buffer, which keeps the array alive + self._data = _get_void_ptr(array) + assert self._data.value == ptr else: + # fake a pointer-like object that holds onto the reference self._ctypes = _missing_ctypes() - self._arr = array - self._data = ptr + self._data = self._ctypes.c_void_p(ptr) + self._data._objects = array + if self._arr.ndim == 0: self._zerod = True else: @@ -262,6 +288,8 @@ class _ctypes(object): ``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a pointer to a ctypes array of floating-point data: ``self.data_as(ctypes.POINTER(ctypes.c_double))``. + + The returned pointer will keep a reference to the array. """ return self._ctypes.cast(self._data, obj) @@ -292,8 +320,13 @@ class _ctypes(object): attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as ``self._array_interface_['data'][0]``. + + Note that unlike `data_as`, a reference will not be kept to the array: + code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a + pointer to a deallocated array, and should be spelt + ``(a + b).ctypes.data_as(ctypes.c_void_p)`` """ - return self._data + return self._data.value def get_shape(self): """ @@ -317,7 +350,7 @@ class _ctypes(object): return self.strides_as(_getintp_ctype()) def get_as_parameter(self): - return self._ctypes.c_void_p(self._data) + return self._data data = property(get_data) shape = property(get_shape) diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py index 4b2a38990..171b2ad7f 100644 --- a/numpy/core/tests/test_multiarray.py +++ b/numpy/core/tests/test_multiarray.py @@ -7472,6 +7472,46 @@ class TestCTypes(object): finally: _internal.ctypes = ctypes + def _make_readonly(x): + x.flags.writeable = False + return x + + @pytest.mark.parametrize('arr', [ + np.array([1, 2, 3]), + np.array([['one', 'two'], ['three', 'four']]), + np.array((1, 2), dtype='i4,i4'), + np.array([None], dtype=object), + np.array([]), + np.empty((0, 0)), + _make_readonly(np.array([1, 2, 3])), + ], ids=[ + '1d', + '2d', + 'structured', + 'object', + 'empty', + 'empty-2d', + 'readonly' + ]) + def test_ctypes_data_as_holds_reference(self, arr): + # gh-9647 + # create a copy to ensure that pytest does not mess with the refcounts + arr = arr.copy() + + arr_ref = weakref.ref(arr) + + ctypes_ptr = arr.ctypes.data_as(ctypes.c_void_p) + + # `ctypes_ptr` should hold onto `arr` + del arr + gc.collect() + assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference") + + # but when the `ctypes_ptr` object dies, so should `arr` + del ctypes_ptr + gc.collect() + assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference") + class TestWritebackIfCopy(object): # all these tests use the WRITEBACKIFCOPY mechanism diff --git a/numpy/ma/tests/test_core.py b/numpy/ma/tests/test_core.py index 8a015e609..4dfc12290 100644 --- a/numpy/ma/tests/test_core.py +++ b/numpy/ma/tests/test_core.py @@ -2390,9 +2390,9 @@ class TestMaskedArrayInPlaceArithmetics(object): assert_equal(xm, y + 1) (x, _, xm) = self.floatdata - id1 = x.data.ctypes._data + id1 = x.data.ctypes.data x += 1. - assert_(id1 == x.data.ctypes._data) + assert_(id1 == x.data.ctypes.data) assert_equal(x, y + 1.) def test_inplace_addition_array(self): |