summaryrefslogtreecommitdiff
path: root/shape_base.py
diff options
context:
space:
mode:
Diffstat (limited to 'shape_base.py')
-rw-r--r--shape_base.py633
1 files changed, 633 insertions, 0 deletions
diff --git a/shape_base.py b/shape_base.py
new file mode 100644
index 000000000..9ac77666f
--- /dev/null
+++ b/shape_base.py
@@ -0,0 +1,633 @@
+__all__ = ['atleast_1d','atleast_2d','atleast_3d','vstack','hstack',
+ 'column_stack','row_stack', 'dstack','array_split','split','hsplit',
+ 'vsplit','dsplit','apply_over_axes','expand_dims',
+ 'apply_along_axis', 'kron', 'tile', 'get_array_wrap']
+
+import numpy.core.numeric as _nx
+from numpy.core.numeric import asarray, zeros, newaxis, outer, \
+ concatenate, isscalar, array, asanyarray
+from numpy.core.fromnumeric import product, reshape
+
+def apply_along_axis(func1d,axis,arr,*args):
+ """ Execute func1d(arr[i],*args) where func1d takes 1-D arrays
+ and arr is an N-d array. i varies so as to apply the function
+ along the given axis for each 1-d subarray in arr.
+ """
+ arr = asarray(arr)
+ nd = arr.ndim
+ if axis < 0:
+ axis += nd
+ if (axis >= nd):
+ raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d."
+ % (axis,nd))
+ ind = [0]*(nd-1)
+ i = zeros(nd,'O')
+ indlist = range(nd)
+ indlist.remove(axis)
+ i[axis] = slice(None,None)
+ outshape = asarray(arr.shape).take(indlist)
+ i.put(indlist, ind)
+ res = func1d(arr[tuple(i.tolist())],*args)
+ # if res is a number, then we have a smaller output array
+ if isscalar(res):
+ outarr = zeros(outshape,asarray(res).dtype)
+ outarr[tuple(ind)] = res
+ Ntot = product(outshape)
+ k = 1
+ while k < Ntot:
+ # increment the index
+ ind[-1] += 1
+ n = -1
+ while (ind[n] >= outshape[n]) and (n > (1-nd)):
+ ind[n-1] += 1
+ ind[n] = 0
+ n -= 1
+ i.put(indlist,ind)
+ res = func1d(arr[tuple(i.tolist())],*args)
+ outarr[tuple(ind)] = res
+ k += 1
+ return outarr
+ else:
+ Ntot = product(outshape)
+ holdshape = outshape
+ outshape = list(arr.shape)
+ outshape[axis] = len(res)
+ outarr = zeros(outshape,asarray(res).dtype)
+ outarr[tuple(i.tolist())] = res
+ k = 1
+ while k < Ntot:
+ # increment the index
+ ind[-1] += 1
+ n = -1
+ while (ind[n] >= holdshape[n]) and (n > (1-nd)):
+ ind[n-1] += 1
+ ind[n] = 0
+ n -= 1
+ i.put(indlist, ind)
+ res = func1d(arr[tuple(i.tolist())],*args)
+ outarr[tuple(i.tolist())] = res
+ k += 1
+ return outarr
+
+
+def apply_over_axes(func, a, axes):
+ """Apply a function repeatedly over multiple axes, keeping the same shape
+ for the resulting array.
+
+ func is called as res = func(a, axis). The result is assumed
+ to be either the same shape as a or have one less dimension.
+ This call is repeated for each axis in the axes sequence.
+ """
+ val = asarray(a)
+ N = a.ndim
+ if array(axes).ndim == 0:
+ axes = (axes,)
+ for axis in axes:
+ if axis < 0: axis = N + axis
+ args = (val, axis)
+ res = func(*args)
+ if res.ndim == val.ndim:
+ val = res
+ else:
+ res = expand_dims(res,axis)
+ if res.ndim == val.ndim:
+ val = res
+ else:
+ raise ValueError, "function is not returning"\
+ " an array of correct shape"
+ return val
+
+def expand_dims(a, axis):
+ """Expand the shape of a by including newaxis before given axis.
+ """
+ a = asarray(a)
+ shape = a.shape
+ if axis < 0:
+ axis = axis + len(shape) + 1
+ return a.reshape(shape[:axis] + (1,) + shape[axis:])
+
+
+def atleast_1d(*arys):
+ """ Force a sequence of arrays to each be at least 1D.
+
+ Description:
+ Force an array to be at least 1D. If an array is 0D, the
+ array is converted to a single row of values. Otherwise,
+ the array is unaltered.
+ Arguments:
+ *arys -- arrays to be converted to 1 or more dimensional array.
+ Returns:
+ input array converted to at least 1D array.
+ """
+ res = []
+ for ary in arys:
+ res.append(array(ary,copy=False,subok=True,ndmin=1))
+ if len(res) == 1:
+ return res[0]
+ else:
+ return res
+
+def atleast_2d(*arys):
+ """ Force a sequence of arrays to each be at least 2D.
+
+ Description:
+ Force an array to each be at least 2D. If the array
+ is 0D or 1D, the array is converted to a single
+ row of values. Otherwise, the array is unaltered.
+ Arguments:
+ arys -- arrays to be converted to 2 or more dimensional array.
+ Returns:
+ input array converted to at least 2D array.
+ """
+ res = []
+ for ary in arys:
+ res.append(array(ary,copy=False,subok=True,ndmin=2))
+ if len(res) == 1:
+ return res[0]
+ else:
+ return res
+
+def atleast_3d(*arys):
+ """ Force a sequence of arrays to each be at least 3D.
+
+ Description:
+ Force an array each be at least 3D. If the array is 0D or 1D,
+ the array is converted to a single 1xNx1 array of values where
+ N is the orginal length of the array. If the array is 2D, the
+ array is converted to a single MxNx1 array of values where MxN
+ is the orginal shape of the array. Otherwise, the array is
+ unaltered.
+ Arguments:
+ arys -- arrays to be converted to 3 or more dimensional array.
+ Returns:
+ input array converted to at least 3D array.
+ """
+ res = []
+ for ary in arys:
+ ary = asarray(ary)
+ if len(ary.shape) == 0:
+ result = ary.reshape(1,1,1)
+ elif len(ary.shape) == 1:
+ result = ary[newaxis,:,newaxis]
+ elif len(ary.shape) == 2:
+ result = ary[:,:,newaxis]
+ else:
+ result = ary
+ res.append(result)
+ if len(res) == 1:
+ return res[0]
+ else:
+ return res
+
+
+def vstack(tup):
+ """ Stack arrays in sequence vertically (row wise)
+
+ Description:
+ Take a sequence of arrays and stack them vertically
+ to make a single array. All arrays in the sequence
+ must have the same shape along all but the first axis.
+ vstack will rebuild arrays divided by vsplit.
+ Arguments:
+ tup -- sequence of arrays. All arrays must have the same
+ shape.
+ Examples:
+ >>> import numpy
+ >>> a = array((1,2,3))
+ >>> b = array((2,3,4))
+ >>> numpy.vstack((a,b))
+ array([[1, 2, 3],
+ [2, 3, 4]])
+ >>> a = array([[1],[2],[3]])
+ >>> b = array([[2],[3],[4]])
+ >>> numpy.vstack((a,b))
+ array([[1],
+ [2],
+ [3],
+ [2],
+ [3],
+ [4]])
+
+ """
+ return _nx.concatenate(map(atleast_2d,tup),0)
+
+def hstack(tup):
+ """ Stack arrays in sequence horizontally (column wise)
+
+ Description:
+ Take a sequence of arrays and stack them horizontally
+ to make a single array. All arrays in the sequence
+ must have the same shape along all but the second axis.
+ hstack will rebuild arrays divided by hsplit.
+ Arguments:
+ tup -- sequence of arrays. All arrays must have the same
+ shape.
+ Examples:
+ >>> import numpy
+ >>> a = array((1,2,3))
+ >>> b = array((2,3,4))
+ >>> numpy.hstack((a,b))
+ array([1, 2, 3, 2, 3, 4])
+ >>> a = array([[1],[2],[3]])
+ >>> b = array([[2],[3],[4]])
+ >>> numpy.hstack((a,b))
+ array([[1, 2],
+ [2, 3],
+ [3, 4]])
+
+ """
+ return _nx.concatenate(map(atleast_1d,tup),1)
+
+row_stack = vstack
+
+def column_stack(tup):
+ """ Stack 1D arrays as columns into a 2D array
+
+ Description:
+ Take a sequence of 1D arrays and stack them as columns
+ to make a single 2D array. All arrays in the sequence
+ must have the same first dimension. 2D arrays are
+ stacked as-is, just like with hstack. 1D arrays are turned
+ into 2D columns first.
+
+ Arguments:
+ tup -- sequence of 1D or 2D arrays. All arrays must have the same
+ first dimension.
+ Examples:
+ >>> import numpy
+ >>> a = array((1,2,3))
+ >>> b = array((2,3,4))
+ >>> numpy.column_stack((a,b))
+ array([[1, 2],
+ [2, 3],
+ [3, 4]])
+
+ """
+ arrays = []
+ for v in tup:
+ arr = array(v,copy=False,subok=True)
+ if arr.ndim < 2:
+ arr = array(arr,copy=False,subok=True,ndmin=2).T
+ arrays.append(arr)
+ return _nx.concatenate(arrays,1)
+
+def dstack(tup):
+ """ Stack arrays in sequence depth wise (along third dimension)
+
+ Description:
+ Take a sequence of arrays and stack them along the third axis.
+ All arrays in the sequence must have the same shape along all
+ but the third axis. This is a simple way to stack 2D arrays
+ (images) into a single 3D array for processing.
+ dstack will rebuild arrays divided by dsplit.
+ Arguments:
+ tup -- sequence of arrays. All arrays must have the same
+ shape.
+ Examples:
+ >>> import numpy
+ >>> a = array((1,2,3))
+ >>> b = array((2,3,4))
+ >>> numpy.dstack((a,b))
+ array([[[1, 2],
+ [2, 3],
+ [3, 4]]])
+ >>> a = array([[1],[2],[3]])
+ >>> b = array([[2],[3],[4]])
+ >>> numpy.dstack((a,b))
+ array([[[1, 2]],
+ <BLANKLINE>
+ [[2, 3]],
+ <BLANKLINE>
+ [[3, 4]]])
+
+ """
+ return _nx.concatenate(map(atleast_3d,tup),2)
+
+def _replace_zero_by_x_arrays(sub_arys):
+ for i in range(len(sub_arys)):
+ if len(_nx.shape(sub_arys[i])) == 0:
+ sub_arys[i] = _nx.array([])
+ elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]),0)):
+ sub_arys[i] = _nx.array([])
+ return sub_arys
+
+def array_split(ary,indices_or_sections,axis = 0):
+ """ Divide an array into a list of sub-arrays.
+
+ Description:
+ Divide ary into a list of sub-arrays along the
+ specified axis. If indices_or_sections is an integer,
+ ary is divided into that many equally sized arrays.
+ If it is impossible to make an equal split, each of the
+ leading arrays in the list have one additional member. If
+ indices_or_sections is a list of sorted integers, its
+ entries define the indexes where ary is split.
+
+ Arguments:
+ ary -- N-D array.
+ Array to be divided into sub-arrays.
+ indices_or_sections -- integer or 1D array.
+ If integer, defines the number of (close to) equal sized
+ sub-arrays. If it is a 1D array of sorted indices, it
+ defines the indexes at which ary is divided. Any empty
+ list results in a single sub-array equal to the original
+ array.
+ axis -- integer. default=0.
+ Specifies the axis along which to split ary.
+ Caveats:
+ Currently, the default for axis is 0. This
+ means a 2D array is divided into multiple groups
+ of rows. This seems like the appropriate default,
+ """
+ try:
+ Ntotal = ary.shape[axis]
+ except AttributeError:
+ Ntotal = len(ary)
+ try: # handle scalar case.
+ Nsections = len(indices_or_sections) + 1
+ div_points = [0] + list(indices_or_sections) + [Ntotal]
+ except TypeError: #indices_or_sections is a scalar, not an array.
+ Nsections = int(indices_or_sections)
+ if Nsections <= 0:
+ raise ValueError, 'number sections must be larger than 0.'
+ Neach_section,extras = divmod(Ntotal,Nsections)
+ section_sizes = [0] + \
+ extras * [Neach_section+1] + \
+ (Nsections-extras) * [Neach_section]
+ div_points = _nx.array(section_sizes).cumsum()
+
+ sub_arys = []
+ sary = _nx.swapaxes(ary,axis,0)
+ for i in range(Nsections):
+ st = div_points[i]; end = div_points[i+1]
+ sub_arys.append(_nx.swapaxes(sary[st:end],axis,0))
+
+ # there is a wierd issue with array slicing that allows
+ # 0x10 arrays and other such things. The following cluge is needed
+ # to get around this issue.
+ sub_arys = _replace_zero_by_x_arrays(sub_arys)
+ # end cluge.
+
+ return sub_arys
+
+def split(ary,indices_or_sections,axis=0):
+ """ Divide an array into a list of sub-arrays.
+
+ Description:
+ Divide ary into a list of sub-arrays along the
+ specified axis. If indices_or_sections is an integer,
+ ary is divided into that many equally sized arrays.
+ If it is impossible to make an equal split, an error is
+ raised. This is the only way this function differs from
+ the array_split() function. If indices_or_sections is a
+ list of sorted integers, its entries define the indexes
+ where ary is split.
+
+ Arguments:
+ ary -- N-D array.
+ Array to be divided into sub-arrays.
+ indices_or_sections -- integer or 1D array.
+ If integer, defines the number of (close to) equal sized
+ sub-arrays. If it is a 1D array of sorted indices, it
+ defines the indexes at which ary is divided. Any empty
+ list results in a single sub-array equal to the original
+ array.
+ axis -- integer. default=0.
+ Specifies the axis along which to split ary.
+ Caveats:
+ Currently, the default for axis is 0. This
+ means a 2D array is divided into multiple groups
+ of rows. This seems like the appropriate default
+ """
+ try: len(indices_or_sections)
+ except TypeError:
+ sections = indices_or_sections
+ N = ary.shape[axis]
+ if N % sections:
+ raise ValueError, 'array split does not result in an equal division'
+ res = array_split(ary,indices_or_sections,axis)
+ return res
+
+def hsplit(ary,indices_or_sections):
+ """ Split ary into multiple columns of sub-arrays
+
+ Description:
+ Split a single array into multiple sub arrays. The array is
+ divided into groups of columns. If indices_or_sections is
+ an integer, ary is divided into that many equally sized sub arrays.
+ If it is impossible to make the sub-arrays equally sized, the
+ operation throws a ValueError exception. See array_split and
+ split for other options on indices_or_sections.
+ Arguments:
+ ary -- N-D array.
+ Array to be divided into sub-arrays.
+ indices_or_sections -- integer or 1D array.
+ If integer, defines the number of (close to) equal sized
+ sub-arrays. If it is a 1D array of sorted indices, it
+ defines the indexes at which ary is divided. Any empty
+ list results in a single sub-array equal to the original
+ array.
+ Returns:
+ sequence of sub-arrays. The returned arrays have the same
+ number of dimensions as the input array.
+ Related:
+ hstack, split, array_split, vsplit, dsplit.
+ Examples:
+ >>> import numpy
+ >>> a= array((1,2,3,4))
+ >>> numpy.hsplit(a,2)
+ [array([1, 2]), array([3, 4])]
+ >>> a = array([[1,2,3,4],[1,2,3,4]])
+ >>> hsplit(a,2)
+ [array([[1, 2],
+ [1, 2]]), array([[3, 4],
+ [3, 4]])]
+
+ """
+ if len(_nx.shape(ary)) == 0:
+ raise ValueError, 'hsplit only works on arrays of 1 or more dimensions'
+ if len(ary.shape) > 1:
+ return split(ary,indices_or_sections,1)
+ else:
+ return split(ary,indices_or_sections,0)
+
+def vsplit(ary,indices_or_sections):
+ """ Split ary into multiple rows of sub-arrays
+
+ Description:
+ Split a single array into multiple sub arrays. The array is
+ divided into groups of rows. If indices_or_sections is
+ an integer, ary is divided into that many equally sized sub arrays.
+ If it is impossible to make the sub-arrays equally sized, the
+ operation throws a ValueError exception. See array_split and
+ split for other options on indices_or_sections.
+ Arguments:
+ ary -- N-D array.
+ Array to be divided into sub-arrays.
+ indices_or_sections -- integer or 1D array.
+ If integer, defines the number of (close to) equal sized
+ sub-arrays. If it is a 1D array of sorted indices, it
+ defines the indexes at which ary is divided. Any empty
+ list results in a single sub-array equal to the original
+ array.
+ Returns:
+ sequence of sub-arrays. The returned arrays have the same
+ number of dimensions as the input array.
+ Caveats:
+ How should we handle 1D arrays here? I am currently raising
+ an error when I encounter them. Any better approach?
+
+ Should we reduce the returned array to their minium dimensions
+ by getting rid of any dimensions that are 1?
+ Related:
+ vstack, split, array_split, hsplit, dsplit.
+ Examples:
+ import numpy
+ >>> a = array([[1,2,3,4],
+ ... [1,2,3,4]])
+ >>> numpy.vsplit(a,2)
+ [array([[1, 2, 3, 4]]), array([[1, 2, 3, 4]])]
+
+ """
+ if len(_nx.shape(ary)) < 2:
+ raise ValueError, 'vsplit only works on arrays of 2 or more dimensions'
+ return split(ary,indices_or_sections,0)
+
+def dsplit(ary,indices_or_sections):
+ """ Split ary into multiple sub-arrays along the 3rd axis (depth)
+
+ Description:
+ Split a single array into multiple sub arrays. The array is
+ divided into groups along the 3rd axis. If indices_or_sections is
+ an integer, ary is divided into that many equally sized sub arrays.
+ If it is impossible to make the sub-arrays equally sized, the
+ operation throws a ValueError exception. See array_split and
+ split for other options on indices_or_sections.
+ Arguments:
+ ary -- N-D array.
+ Array to be divided into sub-arrays.
+ indices_or_sections -- integer or 1D array.
+ If integer, defines the number of (close to) equal sized
+ sub-arrays. If it is a 1D array of sorted indices, it
+ defines the indexes at which ary is divided. Any empty
+ list results in a single sub-array equal to the original
+ array.
+ Returns:
+ sequence of sub-arrays. The returned arrays have the same
+ number of dimensions as the input array.
+ Caveats:
+ See vsplit caveats.
+ Related:
+ dstack, split, array_split, hsplit, vsplit.
+ Examples:
+ >>> a = array([[[1,2,3,4],[1,2,3,4]]])
+ >>> dsplit(a,2)
+ [array([[[1, 2],
+ [1, 2]]]), array([[[3, 4],
+ [3, 4]]])]
+
+ """
+ if len(_nx.shape(ary)) < 3:
+ raise ValueError, 'vsplit only works on arrays of 3 or more dimensions'
+ return split(ary,indices_or_sections,2)
+
+def get_array_wrap(*args):
+ """Find the wrapper for the array with the highest priority.
+
+ In case of ties, leftmost wins. If no wrapper is found, return None
+ """
+ wrappers = [(getattr(x, '__array_priority__', 0), -i,
+ x.__array_wrap__) for i, x in enumerate(args)
+ if hasattr(x, '__array_wrap__')]
+ wrappers.sort()
+ if wrappers:
+ return wrappers[-1][-1]
+ return None
+
+def kron(a,b):
+ """kronecker product of a and b
+
+ Kronecker product of two arrays is block array
+ [[ a[ 0 ,0]*b, a[ 0 ,1]*b, ... , a[ 0 ,n-1]*b ],
+ [ ... ... ],
+ [ a[m-1,0]*b, a[m-1,1]*b, ... , a[m-1,n-1]*b ]]
+ """
+ wrapper = get_array_wrap(a, b)
+ b = asanyarray(b)
+ a = array(a,copy=False,subok=True,ndmin=b.ndim)
+ ndb, nda = b.ndim, a.ndim
+ if (nda == 0 or ndb == 0):
+ return _nx.multiply(a,b)
+ as_ = a.shape
+ bs = b.shape
+ if not a.flags.contiguous:
+ a = reshape(a, as_)
+ if not b.flags.contiguous:
+ b = reshape(b, bs)
+ nd = ndb
+ if (ndb != nda):
+ if (ndb > nda):
+ as_ = (1,)*(ndb-nda) + as_
+ else:
+ bs = (1,)*(nda-ndb) + bs
+ nd = nda
+ result = outer(a,b).reshape(as_+bs)
+ axis = nd-1
+ for _ in xrange(nd):
+ result = concatenate(result, axis=axis)
+ if wrapper is not None:
+ result = wrapper(result)
+ return result
+
+
+def tile(A, reps):
+ """Repeat an array the number of times given in the integer tuple, reps.
+
+ If reps has length d, the result will have dimension of max(d, A.ndim).
+ If reps is scalar it is treated as a 1-tuple.
+
+ If A.ndim < d, A is promoted to be d-dimensional by prepending new axes.
+ So a shape (3,) array is promoted to (1,3) for 2-D replication,
+ or shape (1,1,3) for 3-D replication.
+ If this is not the desired behavior, promote A to d-dimensions manually
+ before calling this function.
+
+ If d < A.ndim, tup is promoted to A.ndim by pre-pending 1's to it. Thus
+ for an A.shape of (2,3,4,5), a tup of (2,2) is treated as (1,1,2,2)
+
+
+ Examples:
+ >>> a = array([0,1,2])
+ >>> tile(a,2)
+ array([0, 1, 2, 0, 1, 2])
+ >>> tile(a,(1,2))
+ array([[0, 1, 2, 0, 1, 2]])
+ >>> tile(a,(2,2))
+ array([[0, 1, 2, 0, 1, 2],
+ [0, 1, 2, 0, 1, 2]])
+ >>> tile(a,(2,1,2))
+ array([[[0, 1, 2, 0, 1, 2]],
+ <BLANKLINE>
+ [[0, 1, 2, 0, 1, 2]]])
+
+ See Also:
+ repeat
+ """
+ try:
+ tup = tuple(reps)
+ except TypeError:
+ tup = (reps,)
+ d = len(tup)
+ c = _nx.array(A,copy=False,subok=True,ndmin=d)
+ shape = list(c.shape)
+ n = max(c.size,1)
+ if (d < c.ndim):
+ tup = (1,)*(c.ndim-d) + tup
+ for i, nrep in enumerate(tup):
+ if nrep!=1:
+ c = c.reshape(-1,n).repeat(nrep,0)
+ dim_in = shape[i]
+ dim_out = dim_in*nrep
+ shape[i] = dim_out
+ n /= max(dim_in,1)
+ return c.reshape(shape)