From 3beebbc0164afbbcc2b6840cf56174c6c073bb40 Mon Sep 17 00:00:00 2001 From: Charles Harris Date: Sun, 18 Aug 2013 18:40:28 -0600 Subject: DEP: Remove deprecated modules numarray and oldnumeric. They were deprecated in 1.8 and scheduled for removal in 1.9. Closes #3637. --- numpy/oldnumeric/random_array.py | 269 --------------------------------------- 1 file changed, 269 deletions(-) delete mode 100644 numpy/oldnumeric/random_array.py (limited to 'numpy/oldnumeric/random_array.py') diff --git a/numpy/oldnumeric/random_array.py b/numpy/oldnumeric/random_array.py deleted file mode 100644 index c43a49cdb..000000000 --- a/numpy/oldnumeric/random_array.py +++ /dev/null @@ -1,269 +0,0 @@ -"""Backward compatible module for RandomArray - -""" -from __future__ import division, absolute_import, print_function - -__all__ = ['ArgumentError', 'F', 'beta', 'binomial', 'chi_square', 'exponential', - 'gamma', 'get_seed', 'mean_var_test', 'multinomial', - 'multivariate_normal', 'negative_binomial', 'noncentral_F', - 'noncentral_chi_square', 'normal', 'permutation', 'poisson', - 'randint', 'random', 'random_integers', 'seed', 'standard_normal', - 'uniform'] - -ArgumentError = ValueError - -import numpy.random.mtrand as mt -import numpy as np - -def seed(x=0, y=0): - if (x == 0 or y == 0): - mt.seed() - else: - mt.seed((x, y)) - -def get_seed(): - raise NotImplementedError( - "If you want to save the state of the random number generator.\n" - "Then you should use obj = numpy.random.get_state() followed by.\n" - "numpy.random.set_state(obj).") - -def random(shape=[]): - "random(n) or random([n, m, ...]) returns array of random numbers" - if shape == []: - shape = None - return mt.random_sample(shape) - -def uniform(minimum, maximum, shape=[]): - """uniform(minimum, maximum, shape=[]) returns array of given shape of random reals - in given range""" - if shape == []: - shape = None - return mt.uniform(minimum, maximum, shape) - -def randint(minimum, maximum=None, shape=[]): - """randint(min, max, shape=[]) = random integers >=min, < max - If max not given, random integers >= 0, = 0.6: - raise SystemExit("uniform returned out of desired range") - print("randint(1, 10, shape=[50])") - print(randint(1, 10, shape=[50])) - print("permutation(10)", permutation(10)) - print("randint(3,9)", randint(3, 9)) - print("random_integers(10, shape=[20])") - print(random_integers(10, shape=[20])) - s = 3.0 - x = normal(2.0, s, [10, 1000]) - if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: - raise SystemExit("standard_normal returned wrong shape") - x.shape = (10000,) - mean_var_test(x, "normally distributed numbers with mean 2 and variance %f"%(s**2,), 2, s**2, 0) - x = exponential(3, 10000) - mean_var_test(x, "random numbers exponentially distributed with mean %f"%(s,), s, s**2, 2) - x = multivariate_normal(np.array([10, 20]), np.array(([1, 2], [2, 4]))) - print("\nA multivariate normal", x) - if x.shape != (2,): raise SystemExit("multivariate_normal returned wrong shape") - x = multivariate_normal(np.array([10, 20]), np.array([[1, 2], [2, 4]]), [4, 3]) - print("A 4x3x2 array containing multivariate normals") - print(x) - if x.shape != (4, 3, 2): raise SystemExit("multivariate_normal returned wrong shape") - x = multivariate_normal(np.array([-100, 0, 100]), np.array([[3, 2, 1], [2, 2, 1], [1, 1, 1]]), 10000) - x_mean = np.sum(x, axis=0)/10000. - print("Average of 10000 multivariate normals with mean [-100,0,100]") - print(x_mean) - x_minus_mean = x - x_mean - print("Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]") - print(np.dot(np.transpose(x_minus_mean), x_minus_mean)/9999.) - x = beta(5.0, 10.0, 10000) - mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014) - x = gamma(.01, 2., 10000) - mean_var_test(x, "gamma(.01,2.) random numbers", 2*100, 2*100*100) - x = chi_square(11., 10000) - mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*np.sqrt(2./11.)) - x = F(5., 10., 10000) - mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35) - x = poisson(50., 10000) - mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14) - print("\nEach element is the result of 16 binomial trials with probability 0.5:") - print(binomial(16, 0.5, 16)) - print("\nEach element is the result of 16 negative binomial trials with probability 0.5:") - print(negative_binomial(16, 0.5, [16,])) - print("\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:") - x = multinomial(16, [0.1, 0.5, 0.1], 8) - print(x) - print("Mean = ", np.sum(x, axis=0)/8.) - -if __name__ == '__main__': - test() -- cgit v1.2.1