From f1cca04886d4f63f7b1ed5b382986af3a9ee6a61 Mon Sep 17 00:00:00 2001 From: Travis Oliphant Date: Fri, 4 Aug 2006 23:32:12 +0000 Subject: Many name-changes in oldnumeric. This may break some numpy code that was using the oldnumeric interface. --- numpy/random/old.py | 267 ---------------------------------------------------- 1 file changed, 267 deletions(-) delete mode 100644 numpy/random/old.py (limited to 'numpy/random/old.py') diff --git a/numpy/random/old.py b/numpy/random/old.py deleted file mode 100644 index 414dc5215..000000000 --- a/numpy/random/old.py +++ /dev/null @@ -1,267 +0,0 @@ - -__all__ = ['ArgumentError','F','beta','binomial','chi_square', 'exponential', 'gamma', 'get_seed', - 'mean_var_test', 'multinomial', 'multivariate_normal', 'negative_binomial', - 'noncentral_F', 'noncentral_chi_square', 'normal', 'permutation', 'poisson', 'randint', - 'random', 'random_integers', 'seed', 'standard_normal', 'uniform'] - -ArgumentError = ValueError - -import numpy.random.mtrand as mt -import numpy as Numeric - -from types import IntType - -def seed(x=0, y=0): - if (x == 0 or y == 0): - mt.seed() - else: - mt.seed((x,y)) - -def get_seed(): - raise NotImplementedError, \ - "If you want to save the state of the random number generator.\n"\ - "Then you should use obj = numpy.random.get_state() followed by.\n"\ - "numpy.random.set_state(obj)." - -def random(shape=[]): - "random(n) or random([n, m, ...]) returns array of random numbers" - if shape == []: - shape = None - return mt.random_sample(shape) - -def uniform(minimum, maximum, shape=[]): - """uniform(minimum, maximum, shape=[]) returns array of given shape of random reals - in given range""" - if shape == []: - shape = None - return mt.uniform(minimum, maximum, shape) - -def randint(minimum, maximum=None, shape=[]): - """randint(min, max, shape=[]) = random integers >=min, < max - If max not given, random integers >= 0, = 0.6: - raise SystemExit, "uniform returned out of desired range" - print "randint(1, 10, shape=[50])" - print randint(1, 10, shape=[50]) - print "permutation(10)", permutation(10) - print "randint(3,9)", randint(3,9) - print "random_integers(10, shape=[20])" - print random_integers(10, shape=[20]) - s = 3.0 - x = normal(2.0, s, [10, 1000]) - if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000: - raise SystemExit, "standard_normal returned wrong shape" - x.shape = (10000,) - mean_var_test(x, "normally distributed numbers with mean 2 and variance %f"%(s**2,), 2, s**2, 0) - x = exponential(3, 10000) - mean_var_test(x, "random numbers exponentially distributed with mean %f"%(s,), s, s**2, 2) - x = multivariate_normal(Numeric.array([10,20]), Numeric.array(([1,2],[2,4]))) - print "\nA multivariate normal", x - if x.shape != (2,): raise SystemExit, "multivariate_normal returned wrong shape" - x = multivariate_normal(Numeric.array([10,20]), Numeric.array([[1,2],[2,4]]), [4,3]) - print "A 4x3x2 array containing multivariate normals" - print x - if x.shape != (4,3,2): raise SystemExit, "multivariate_normal returned wrong shape" - x = multivariate_normal(Numeric.array([-100,0,100]), Numeric.array([[3,2,1],[2,2,1],[1,1,1]]), 10000) - x_mean = Numeric.sum(x)/10000. - print "Average of 10000 multivariate normals with mean [-100,0,100]" - print x_mean - x_minus_mean = x - x_mean - print "Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]" - print Numeric.dot(Numeric.transpose(x_minus_mean),x_minus_mean)/9999. - x = beta(5.0, 10.0, 10000) - mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014) - x = gamma(.01, 2., 10000) - mean_var_test(x, "gamma(.01,2.) random numbers", 2*100, 2*100*100) - x = chi_square(11., 10000) - mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*Numeric.sqrt(2./11.)) - x = F(5., 10., 10000) - mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35) - x = poisson(50., 10000) - mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14) - print "\nEach element is the result of 16 binomial trials with probability 0.5:" - print binomial(16, 0.5, 16) - print "\nEach element is the result of 16 negative binomial trials with probability 0.5:" - print negative_binomial(16, 0.5, [16,]) - print "\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:" - x = multinomial(16, [0.1, 0.5, 0.1], 8) - print x - print "Mean = ", Numeric.sum(x)/8. - -if __name__ == '__main__': - test() - - -- cgit v1.2.1