From 157aedaa50d3c5fc74b45c79fb8b8c4b650217ac Mon Sep 17 00:00:00 2001 From: Charles Harris Date: Tue, 27 Mar 2018 09:26:43 -0600 Subject: MAINT: Rearrange numpy/testing files. This is to prepare for the switch to pytest. * Rename `numpy/testing/nose_tools` to `numpy/testing/_private`. * Redirect imports as needed. * Copy `_testutils.py` from scipy to `numpy/testing/_private`. * Rename `_testutils.py` to `_pytester.py` and remove unneeded bits. --- numpy/testing/_private/utils.py | 2274 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 2274 insertions(+) create mode 100644 numpy/testing/_private/utils.py (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py new file mode 100644 index 000000000..507ecb1e2 --- /dev/null +++ b/numpy/testing/_private/utils.py @@ -0,0 +1,2274 @@ +""" +Utility function to facilitate testing. + +""" +from __future__ import division, absolute_import, print_function + +import os +import sys +import re +import operator +import warnings +from functools import partial, wraps +import shutil +import contextlib +from tempfile import mkdtemp, mkstemp +from unittest.case import SkipTest + +from numpy.core import( + float32, empty, arange, array_repr, ndarray, isnat, array) +from numpy.lib.utils import deprecate + +if sys.version_info[0] >= 3: + from io import StringIO +else: + from StringIO import StringIO + +__all__ = [ + 'assert_equal', 'assert_almost_equal', 'assert_approx_equal', + 'assert_array_equal', 'assert_array_less', 'assert_string_equal', + 'assert_array_almost_equal', 'assert_raises', 'build_err_msg', + 'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal', + 'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure', + 'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex', + 'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings', + 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', + 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', + 'HAS_REFCOUNT', 'suppress_warnings', 'assert_array_compare', + '_assert_valid_refcount', '_gen_alignment_data', + ] + + +class KnownFailureException(Exception): + '''Raise this exception to mark a test as a known failing test.''' + pass + + +KnownFailureTest = KnownFailureException # backwards compat +verbose = 0 + +IS_PYPY = '__pypy__' in sys.modules +HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None + + +def import_nose(): + """ Import nose only when needed. + """ + nose_is_good = True + minimum_nose_version = (1, 0, 0) + try: + import nose + except ImportError: + nose_is_good = False + else: + if nose.__versioninfo__ < minimum_nose_version: + nose_is_good = False + + if not nose_is_good: + msg = ('Need nose >= %d.%d.%d for tests - see ' + 'http://nose.readthedocs.io' % + minimum_nose_version) + raise ImportError(msg) + + return nose + + +def assert_(val, msg=''): + """ + Assert that works in release mode. + Accepts callable msg to allow deferring evaluation until failure. + + The Python built-in ``assert`` does not work when executing code in + optimized mode (the ``-O`` flag) - no byte-code is generated for it. + + For documentation on usage, refer to the Python documentation. + + """ + __tracebackhide__ = True # Hide traceback for py.test + if not val: + try: + smsg = msg() + except TypeError: + smsg = msg + raise AssertionError(smsg) + + +def gisnan(x): + """like isnan, but always raise an error if type not supported instead of + returning a TypeError object. + + Notes + ----- + isnan and other ufunc sometimes return a NotImplementedType object instead + of raising any exception. This function is a wrapper to make sure an + exception is always raised. + + This should be removed once this problem is solved at the Ufunc level.""" + from numpy.core import isnan + st = isnan(x) + if isinstance(st, type(NotImplemented)): + raise TypeError("isnan not supported for this type") + return st + + +def gisfinite(x): + """like isfinite, but always raise an error if type not supported instead of + returning a TypeError object. + + Notes + ----- + isfinite and other ufunc sometimes return a NotImplementedType object instead + of raising any exception. This function is a wrapper to make sure an + exception is always raised. + + This should be removed once this problem is solved at the Ufunc level.""" + from numpy.core import isfinite, errstate + with errstate(invalid='ignore'): + st = isfinite(x) + if isinstance(st, type(NotImplemented)): + raise TypeError("isfinite not supported for this type") + return st + + +def gisinf(x): + """like isinf, but always raise an error if type not supported instead of + returning a TypeError object. + + Notes + ----- + isinf and other ufunc sometimes return a NotImplementedType object instead + of raising any exception. This function is a wrapper to make sure an + exception is always raised. + + This should be removed once this problem is solved at the Ufunc level.""" + from numpy.core import isinf, errstate + with errstate(invalid='ignore'): + st = isinf(x) + if isinstance(st, type(NotImplemented)): + raise TypeError("isinf not supported for this type") + return st + + +@deprecate(message="numpy.testing.rand is deprecated in numpy 1.11. " + "Use numpy.random.rand instead.") +def rand(*args): + """Returns an array of random numbers with the given shape. + + This only uses the standard library, so it is useful for testing purposes. + """ + import random + from numpy.core import zeros, float64 + results = zeros(args, float64) + f = results.flat + for i in range(len(f)): + f[i] = random.random() + return results + + +if os.name == 'nt': + # Code "stolen" from enthought/debug/memusage.py + def GetPerformanceAttributes(object, counter, instance=None, + inum=-1, format=None, machine=None): + # NOTE: Many counters require 2 samples to give accurate results, + # including "% Processor Time" (as by definition, at any instant, a + # thread's CPU usage is either 0 or 100). To read counters like this, + # you should copy this function, but keep the counter open, and call + # CollectQueryData() each time you need to know. + # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp + # My older explanation for this was that the "AddCounter" process forced + # the CPU to 100%, but the above makes more sense :) + import win32pdh + if format is None: + format = win32pdh.PDH_FMT_LONG + path = win32pdh.MakeCounterPath( (machine, object, instance, None, inum, counter)) + hq = win32pdh.OpenQuery() + try: + hc = win32pdh.AddCounter(hq, path) + try: + win32pdh.CollectQueryData(hq) + type, val = win32pdh.GetFormattedCounterValue(hc, format) + return val + finally: + win32pdh.RemoveCounter(hc) + finally: + win32pdh.CloseQuery(hq) + + def memusage(processName="python", instance=0): + # from win32pdhutil, part of the win32all package + import win32pdh + return GetPerformanceAttributes("Process", "Virtual Bytes", + processName, instance, + win32pdh.PDH_FMT_LONG, None) +elif sys.platform[:5] == 'linux': + + def memusage(_proc_pid_stat='/proc/%s/stat' % (os.getpid())): + """ + Return virtual memory size in bytes of the running python. + + """ + try: + f = open(_proc_pid_stat, 'r') + l = f.readline().split(' ') + f.close() + return int(l[22]) + except Exception: + return +else: + def memusage(): + """ + Return memory usage of running python. [Not implemented] + + """ + raise NotImplementedError + + +if sys.platform[:5] == 'linux': + def jiffies(_proc_pid_stat='/proc/%s/stat' % (os.getpid()), + _load_time=[]): + """ + Return number of jiffies elapsed. + + Return number of jiffies (1/100ths of a second) that this + process has been scheduled in user mode. See man 5 proc. + + """ + import time + if not _load_time: + _load_time.append(time.time()) + try: + f = open(_proc_pid_stat, 'r') + l = f.readline().split(' ') + f.close() + return int(l[13]) + except Exception: + return int(100*(time.time()-_load_time[0])) +else: + # os.getpid is not in all platforms available. + # Using time is safe but inaccurate, especially when process + # was suspended or sleeping. + def jiffies(_load_time=[]): + """ + Return number of jiffies elapsed. + + Return number of jiffies (1/100ths of a second) that this + process has been scheduled in user mode. See man 5 proc. + + """ + import time + if not _load_time: + _load_time.append(time.time()) + return int(100*(time.time()-_load_time[0])) + + +def build_err_msg(arrays, err_msg, header='Items are not equal:', + verbose=True, names=('ACTUAL', 'DESIRED'), precision=8): + msg = ['\n' + header] + if err_msg: + if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header): + msg = [msg[0] + ' ' + err_msg] + else: + msg.append(err_msg) + if verbose: + for i, a in enumerate(arrays): + + if isinstance(a, ndarray): + # precision argument is only needed if the objects are ndarrays + r_func = partial(array_repr, precision=precision) + else: + r_func = repr + + try: + r = r_func(a) + except Exception as exc: + r = '[repr failed for <{}>: {}]'.format(type(a).__name__, exc) + if r.count('\n') > 3: + r = '\n'.join(r.splitlines()[:3]) + r += '...' + msg.append(' %s: %s' % (names[i], r)) + return '\n'.join(msg) + + +def assert_equal(actual, desired, err_msg='', verbose=True): + """ + Raises an AssertionError if two objects are not equal. + + Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), + check that all elements of these objects are equal. An exception is raised + at the first conflicting values. + + Parameters + ---------- + actual : array_like + The object to check. + desired : array_like + The expected object. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal. + + Examples + -------- + >>> np.testing.assert_equal([4,5], [4,6]) + ... + : + Items are not equal: + item=1 + ACTUAL: 5 + DESIRED: 6 + + """ + __tracebackhide__ = True # Hide traceback for py.test + if isinstance(desired, dict): + if not isinstance(actual, dict): + raise AssertionError(repr(type(actual))) + assert_equal(len(actual), len(desired), err_msg, verbose) + for k, i in desired.items(): + if k not in actual: + raise AssertionError(repr(k)) + assert_equal(actual[k], desired[k], 'key=%r\n%s' % (k, err_msg), verbose) + return + if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): + assert_equal(len(actual), len(desired), err_msg, verbose) + for k in range(len(desired)): + assert_equal(actual[k], desired[k], 'item=%r\n%s' % (k, err_msg), verbose) + return + from numpy.core import ndarray, isscalar, signbit + from numpy.lib import iscomplexobj, real, imag + if isinstance(actual, ndarray) or isinstance(desired, ndarray): + return assert_array_equal(actual, desired, err_msg, verbose) + msg = build_err_msg([actual, desired], err_msg, verbose=verbose) + + # Handle complex numbers: separate into real/imag to handle + # nan/inf/negative zero correctly + # XXX: catch ValueError for subclasses of ndarray where iscomplex fail + try: + usecomplex = iscomplexobj(actual) or iscomplexobj(desired) + except ValueError: + usecomplex = False + + if usecomplex: + if iscomplexobj(actual): + actualr = real(actual) + actuali = imag(actual) + else: + actualr = actual + actuali = 0 + if iscomplexobj(desired): + desiredr = real(desired) + desiredi = imag(desired) + else: + desiredr = desired + desiredi = 0 + try: + assert_equal(actualr, desiredr) + assert_equal(actuali, desiredi) + except AssertionError: + raise AssertionError(msg) + + # isscalar test to check cases such as [np.nan] != np.nan + if isscalar(desired) != isscalar(actual): + raise AssertionError(msg) + + # Inf/nan/negative zero handling + try: + isdesnan = gisnan(desired) + isactnan = gisnan(actual) + if isdesnan and isactnan: + return # both nan, so equal + + # handle signed zero specially for floats + if desired == 0 and actual == 0: + if not signbit(desired) == signbit(actual): + raise AssertionError(msg) + + except (TypeError, ValueError, NotImplementedError): + pass + + try: + isdesnat = isnat(desired) + isactnat = isnat(actual) + dtypes_match = array(desired).dtype.type == array(actual).dtype.type + if isdesnat and isactnat: + # If both are NaT (and have the same dtype -- datetime or + # timedelta) they are considered equal. + if dtypes_match: + return + else: + raise AssertionError(msg) + + except (TypeError, ValueError, NotImplementedError): + pass + + try: + # Explicitly use __eq__ for comparison, gh-2552 + if not (desired == actual): + raise AssertionError(msg) + + except (DeprecationWarning, FutureWarning) as e: + # this handles the case when the two types are not even comparable + if 'elementwise == comparison' in e.args[0]: + raise AssertionError(msg) + else: + raise + + +def print_assert_equal(test_string, actual, desired): + """ + Test if two objects are equal, and print an error message if test fails. + + The test is performed with ``actual == desired``. + + Parameters + ---------- + test_string : str + The message supplied to AssertionError. + actual : object + The object to test for equality against `desired`. + desired : object + The expected result. + + Examples + -------- + >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) + >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) + Traceback (most recent call last): + ... + AssertionError: Test XYZ of func xyz failed + ACTUAL: + [0, 1] + DESIRED: + [0, 2] + + """ + __tracebackhide__ = True # Hide traceback for py.test + import pprint + + if not (actual == desired): + msg = StringIO() + msg.write(test_string) + msg.write(' failed\nACTUAL: \n') + pprint.pprint(actual, msg) + msg.write('DESIRED: \n') + pprint.pprint(desired, msg) + raise AssertionError(msg.getvalue()) + + +def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True): + """ + Raises an AssertionError if two items are not equal up to desired + precision. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + The test verifies that the elements of ``actual`` and ``desired`` satisfy. + + ``abs(desired-actual) < 1.5 * 10**(-decimal)`` + + That is a looser test than originally documented, but agrees with what the + actual implementation in `assert_array_almost_equal` did up to rounding + vagaries. An exception is raised at conflicting values. For ndarrays this + delegates to assert_array_almost_equal + + Parameters + ---------- + actual : array_like + The object to check. + desired : array_like + The expected object. + decimal : int, optional + Desired precision, default is 7. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + >>> import numpy.testing as npt + >>> npt.assert_almost_equal(2.3333333333333, 2.33333334) + >>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) + ... + : + Items are not equal: + ACTUAL: 2.3333333333333002 + DESIRED: 2.3333333399999998 + + >>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]), + ... np.array([1.0,2.33333334]), decimal=9) + ... + : + Arrays are not almost equal + + (mismatch 50.0%) + x: array([ 1. , 2.33333333]) + y: array([ 1. , 2.33333334]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + from numpy.core import ndarray + from numpy.lib import iscomplexobj, real, imag + + # Handle complex numbers: separate into real/imag to handle + # nan/inf/negative zero correctly + # XXX: catch ValueError for subclasses of ndarray where iscomplex fail + try: + usecomplex = iscomplexobj(actual) or iscomplexobj(desired) + except ValueError: + usecomplex = False + + def _build_err_msg(): + header = ('Arrays are not almost equal to %d decimals' % decimal) + return build_err_msg([actual, desired], err_msg, verbose=verbose, + header=header) + + if usecomplex: + if iscomplexobj(actual): + actualr = real(actual) + actuali = imag(actual) + else: + actualr = actual + actuali = 0 + if iscomplexobj(desired): + desiredr = real(desired) + desiredi = imag(desired) + else: + desiredr = desired + desiredi = 0 + try: + assert_almost_equal(actualr, desiredr, decimal=decimal) + assert_almost_equal(actuali, desiredi, decimal=decimal) + except AssertionError: + raise AssertionError(_build_err_msg()) + + if isinstance(actual, (ndarray, tuple, list)) \ + or isinstance(desired, (ndarray, tuple, list)): + return assert_array_almost_equal(actual, desired, decimal, err_msg) + try: + # If one of desired/actual is not finite, handle it specially here: + # check that both are nan if any is a nan, and test for equality + # otherwise + if not (gisfinite(desired) and gisfinite(actual)): + if gisnan(desired) or gisnan(actual): + if not (gisnan(desired) and gisnan(actual)): + raise AssertionError(_build_err_msg()) + else: + if not desired == actual: + raise AssertionError(_build_err_msg()) + return + except (NotImplementedError, TypeError): + pass + if abs(desired - actual) >= 1.5 * 10.0**(-decimal): + raise AssertionError(_build_err_msg()) + + +def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True): + """ + Raises an AssertionError if two items are not equal up to significant + digits. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + Given two numbers, check that they are approximately equal. + Approximately equal is defined as the number of significant digits + that agree. + + Parameters + ---------- + actual : scalar + The object to check. + desired : scalar + The expected object. + significant : int, optional + Desired precision, default is 7. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) + >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, + significant=8) + >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, + significant=8) + ... + : + Items are not equal to 8 significant digits: + ACTUAL: 1.234567e-021 + DESIRED: 1.2345672000000001e-021 + + the evaluated condition that raises the exception is + + >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) + True + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + + (actual, desired) = map(float, (actual, desired)) + if desired == actual: + return + # Normalized the numbers to be in range (-10.0,10.0) + # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) + with np.errstate(invalid='ignore'): + scale = 0.5*(np.abs(desired) + np.abs(actual)) + scale = np.power(10, np.floor(np.log10(scale))) + try: + sc_desired = desired/scale + except ZeroDivisionError: + sc_desired = 0.0 + try: + sc_actual = actual/scale + except ZeroDivisionError: + sc_actual = 0.0 + msg = build_err_msg([actual, desired], err_msg, + header='Items are not equal to %d significant digits:' % + significant, + verbose=verbose) + try: + # If one of desired/actual is not finite, handle it specially here: + # check that both are nan if any is a nan, and test for equality + # otherwise + if not (gisfinite(desired) and gisfinite(actual)): + if gisnan(desired) or gisnan(actual): + if not (gisnan(desired) and gisnan(actual)): + raise AssertionError(msg) + else: + if not desired == actual: + raise AssertionError(msg) + return + except (TypeError, NotImplementedError): + pass + if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)): + raise AssertionError(msg) + + +def assert_array_compare(comparison, x, y, err_msg='', verbose=True, + header='', precision=6, equal_nan=True, + equal_inf=True): + __tracebackhide__ = True # Hide traceback for py.test + from numpy.core import array, isnan, isinf, any, inf + x = array(x, copy=False, subok=True) + y = array(y, copy=False, subok=True) + + def isnumber(x): + return x.dtype.char in '?bhilqpBHILQPefdgFDG' + + def istime(x): + return x.dtype.char in "Mm" + + def chk_same_position(x_id, y_id, hasval='nan'): + """Handling nan/inf: check that x and y have the nan/inf at the same + locations.""" + try: + assert_array_equal(x_id, y_id) + except AssertionError: + msg = build_err_msg([x, y], + err_msg + '\nx and y %s location mismatch:' + % (hasval), verbose=verbose, header=header, + names=('x', 'y'), precision=precision) + raise AssertionError(msg) + + try: + cond = (x.shape == () or y.shape == ()) or x.shape == y.shape + if not cond: + msg = build_err_msg([x, y], + err_msg + + '\n(shapes %s, %s mismatch)' % (x.shape, + y.shape), + verbose=verbose, header=header, + names=('x', 'y'), precision=precision) + raise AssertionError(msg) + + if isnumber(x) and isnumber(y): + has_nan = has_inf = False + if equal_nan: + x_isnan, y_isnan = isnan(x), isnan(y) + # Validate that NaNs are in the same place + has_nan = any(x_isnan) or any(y_isnan) + if has_nan: + chk_same_position(x_isnan, y_isnan, hasval='nan') + + if equal_inf: + x_isinf, y_isinf = isinf(x), isinf(y) + # Validate that infinite values are in the same place + has_inf = any(x_isinf) or any(y_isinf) + if has_inf: + # Check +inf and -inf separately, since they are different + chk_same_position(x == +inf, y == +inf, hasval='+inf') + chk_same_position(x == -inf, y == -inf, hasval='-inf') + + if has_nan and has_inf: + x = x[~(x_isnan | x_isinf)] + y = y[~(y_isnan | y_isinf)] + elif has_nan: + x = x[~x_isnan] + y = y[~y_isnan] + elif has_inf: + x = x[~x_isinf] + y = y[~y_isinf] + + # Only do the comparison if actual values are left + if x.size == 0: + return + + elif istime(x) and istime(y): + # If one is datetime64 and the other timedelta64 there is no point + if equal_nan and x.dtype.type == y.dtype.type: + x_isnat, y_isnat = isnat(x), isnat(y) + + if any(x_isnat) or any(y_isnat): + chk_same_position(x_isnat, y_isnat, hasval="NaT") + + if any(x_isnat) or any(y_isnat): + x = x[~x_isnat] + y = y[~y_isnat] + + val = comparison(x, y) + + if isinstance(val, bool): + cond = val + reduced = [0] + else: + reduced = val.ravel() + cond = reduced.all() + reduced = reduced.tolist() + if not cond: + match = 100-100.0*reduced.count(1)/len(reduced) + msg = build_err_msg([x, y], + err_msg + + '\n(mismatch %s%%)' % (match,), + verbose=verbose, header=header, + names=('x', 'y'), precision=precision) + raise AssertionError(msg) + except ValueError: + import traceback + efmt = traceback.format_exc() + header = 'error during assertion:\n\n%s\n\n%s' % (efmt, header) + + msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header, + names=('x', 'y'), precision=precision) + raise ValueError(msg) + + +def assert_array_equal(x, y, err_msg='', verbose=True): + """ + Raises an AssertionError if two array_like objects are not equal. + + Given two array_like objects, check that the shape is equal and all + elements of these objects are equal. An exception is raised at + shape mismatch or conflicting values. In contrast to the standard usage + in numpy, NaNs are compared like numbers, no assertion is raised if + both objects have NaNs in the same positions. + + The usual caution for verifying equality with floating point numbers is + advised. + + Parameters + ---------- + x : array_like + The actual object to check. + y : array_like + The desired, expected object. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired objects are not equal. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + The first assert does not raise an exception: + + >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], + ... [np.exp(0),2.33333, np.nan]) + + Assert fails with numerical inprecision with floats: + + >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], + ... [1, np.sqrt(np.pi)**2, np.nan]) + ... + : + AssertionError: + Arrays are not equal + + (mismatch 50.0%) + x: array([ 1. , 3.14159265, NaN]) + y: array([ 1. , 3.14159265, NaN]) + + Use `assert_allclose` or one of the nulp (number of floating point values) + functions for these cases instead: + + >>> np.testing.assert_allclose([1.0,np.pi,np.nan], + ... [1, np.sqrt(np.pi)**2, np.nan], + ... rtol=1e-10, atol=0) + + """ + __tracebackhide__ = True # Hide traceback for py.test + assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, + verbose=verbose, header='Arrays are not equal') + + +def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): + """ + Raises an AssertionError if two objects are not equal up to desired + precision. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + The test verifies identical shapes and that the elements of ``actual`` and + ``desired`` satisfy. + + ``abs(desired-actual) < 1.5 * 10**(-decimal)`` + + That is a looser test than originally documented, but agrees with what the + actual implementation did up to rounding vagaries. An exception is raised + at shape mismatch or conflicting values. In contrast to the standard usage + in numpy, NaNs are compared like numbers, no assertion is raised if both + objects have NaNs in the same positions. + + Parameters + ---------- + x : array_like + The actual object to check. + y : array_like + The desired, expected object. + decimal : int, optional + Desired precision, default is 6. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + the first assert does not raise an exception + + >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], + [1.0,2.333,np.nan]) + + >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], + ... [1.0,2.33339,np.nan], decimal=5) + ... + : + AssertionError: + Arrays are not almost equal + + (mismatch 50.0%) + x: array([ 1. , 2.33333, NaN]) + y: array([ 1. , 2.33339, NaN]) + + >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], + ... [1.0,2.33333, 5], decimal=5) + : + ValueError: + Arrays are not almost equal + x: array([ 1. , 2.33333, NaN]) + y: array([ 1. , 2.33333, 5. ]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + from numpy.core import around, number, float_, result_type, array + from numpy.core.numerictypes import issubdtype + from numpy.core.fromnumeric import any as npany + + def compare(x, y): + try: + if npany(gisinf(x)) or npany( gisinf(y)): + xinfid = gisinf(x) + yinfid = gisinf(y) + if not (xinfid == yinfid).all(): + return False + # if one item, x and y is +- inf + if x.size == y.size == 1: + return x == y + x = x[~xinfid] + y = y[~yinfid] + except (TypeError, NotImplementedError): + pass + + # make sure y is an inexact type to avoid abs(MIN_INT); will cause + # casting of x later. + dtype = result_type(y, 1.) + y = array(y, dtype=dtype, copy=False, subok=True) + z = abs(x - y) + + if not issubdtype(z.dtype, number): + z = z.astype(float_) # handle object arrays + + return z < 1.5 * 10.0**(-decimal) + + assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, + header=('Arrays are not almost equal to %d decimals' % decimal), + precision=decimal) + + +def assert_array_less(x, y, err_msg='', verbose=True): + """ + Raises an AssertionError if two array_like objects are not ordered by less + than. + + Given two array_like objects, check that the shape is equal and all + elements of the first object are strictly smaller than those of the + second object. An exception is raised at shape mismatch or incorrectly + ordered values. Shape mismatch does not raise if an object has zero + dimension. In contrast to the standard usage in numpy, NaNs are + compared, no assertion is raised if both objects have NaNs in the same + positions. + + + + Parameters + ---------- + x : array_like + The smaller object to check. + y : array_like + The larger object to compare. + err_msg : string + The error message to be printed in case of failure. + verbose : bool + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired objects are not equal. + + See Also + -------- + assert_array_equal: tests objects for equality + assert_array_almost_equal: test objects for equality up to precision + + + + Examples + -------- + >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan]) + >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan]) + ... + : + Arrays are not less-ordered + (mismatch 50.0%) + x: array([ 1., 1., NaN]) + y: array([ 1., 2., NaN]) + + >>> np.testing.assert_array_less([1.0, 4.0], 3) + ... + : + Arrays are not less-ordered + (mismatch 50.0%) + x: array([ 1., 4.]) + y: array(3) + + >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4]) + ... + : + Arrays are not less-ordered + (shapes (3,), (1,) mismatch) + x: array([ 1., 2., 3.]) + y: array([4]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, + verbose=verbose, + header='Arrays are not less-ordered', + equal_inf=False) + + +def runstring(astr, dict): + exec(astr, dict) + + +def assert_string_equal(actual, desired): + """ + Test if two strings are equal. + + If the given strings are equal, `assert_string_equal` does nothing. + If they are not equal, an AssertionError is raised, and the diff + between the strings is shown. + + Parameters + ---------- + actual : str + The string to test for equality against the expected string. + desired : str + The expected string. + + Examples + -------- + >>> np.testing.assert_string_equal('abc', 'abc') + >>> np.testing.assert_string_equal('abc', 'abcd') + Traceback (most recent call last): + File "", line 1, in + ... + AssertionError: Differences in strings: + - abc+ abcd? + + + """ + # delay import of difflib to reduce startup time + __tracebackhide__ = True # Hide traceback for py.test + import difflib + + if not isinstance(actual, str): + raise AssertionError(repr(type(actual))) + if not isinstance(desired, str): + raise AssertionError(repr(type(desired))) + if re.match(r'\A'+desired+r'\Z', actual, re.M): + return + + diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1))) + diff_list = [] + while diff: + d1 = diff.pop(0) + if d1.startswith(' '): + continue + if d1.startswith('- '): + l = [d1] + d2 = diff.pop(0) + if d2.startswith('? '): + l.append(d2) + d2 = diff.pop(0) + if not d2.startswith('+ '): + raise AssertionError(repr(d2)) + l.append(d2) + if diff: + d3 = diff.pop(0) + if d3.startswith('? '): + l.append(d3) + else: + diff.insert(0, d3) + if re.match(r'\A'+d2[2:]+r'\Z', d1[2:]): + continue + diff_list.extend(l) + continue + raise AssertionError(repr(d1)) + if not diff_list: + return + msg = 'Differences in strings:\n%s' % (''.join(diff_list)).rstrip() + if actual != desired: + raise AssertionError(msg) + + +def rundocs(filename=None, raise_on_error=True): + """ + Run doctests found in the given file. + + By default `rundocs` raises an AssertionError on failure. + + Parameters + ---------- + filename : str + The path to the file for which the doctests are run. + raise_on_error : bool + Whether to raise an AssertionError when a doctest fails. Default is + True. + + Notes + ----- + The doctests can be run by the user/developer by adding the ``doctests`` + argument to the ``test()`` call. For example, to run all tests (including + doctests) for `numpy.lib`: + + >>> np.lib.test(doctests=True) #doctest: +SKIP + """ + from numpy.compat import npy_load_module + import doctest + if filename is None: + f = sys._getframe(1) + filename = f.f_globals['__file__'] + name = os.path.splitext(os.path.basename(filename))[0] + m = npy_load_module(name, filename) + + tests = doctest.DocTestFinder().find(m) + runner = doctest.DocTestRunner(verbose=False) + + msg = [] + if raise_on_error: + out = lambda s: msg.append(s) + else: + out = None + + for test in tests: + runner.run(test, out=out) + + if runner.failures > 0 and raise_on_error: + raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg)) + + +def raises(*args): + """Decorator to check for raised exceptions. + + The decorated test function must raise one of the passed exceptions to + pass. If you want to test many assertions about exceptions in a single + test, you may want to use `assert_raises` instead. + + .. warning:: + This decorator is nose specific, do not use it if you are using a + different test framework. + + Parameters + ---------- + args : exceptions + The test passes if any of the passed exceptions is raised. + + Raises + ------ + AssertionError + + Examples + -------- + + Usage:: + + @raises(TypeError, ValueError) + def test_raises_type_error(): + raise TypeError("This test passes") + + @raises(Exception) + def test_that_fails_by_passing(): + pass + + """ + nose = import_nose() + return nose.tools.raises(*args) + +# +# assert_raises and assert_raises_regex are taken from unittest. +# +import unittest + + +class _Dummy(unittest.TestCase): + def nop(self): + pass + +_d = _Dummy('nop') + +def assert_raises(*args, **kwargs): + """ + assert_raises(exception_class, callable, *args, **kwargs) + assert_raises(exception_class) + + Fail unless an exception of class exception_class is thrown + by callable when invoked with arguments args and keyword + arguments kwargs. If a different type of exception is + thrown, it will not be caught, and the test case will be + deemed to have suffered an error, exactly as for an + unexpected exception. + + Alternatively, `assert_raises` can be used as a context manager: + + >>> from numpy.testing import assert_raises + >>> with assert_raises(ZeroDivisionError): + ... 1 / 0 + + is equivalent to + + >>> def div(x, y): + ... return x / y + >>> assert_raises(ZeroDivisionError, div, 1, 0) + + """ + __tracebackhide__ = True # Hide traceback for py.test + return _d.assertRaises(*args,**kwargs) + + +def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs): + """ + assert_raises_regex(exception_class, expected_regexp, callable, *args, + **kwargs) + assert_raises_regex(exception_class, expected_regexp) + + Fail unless an exception of class exception_class and with message that + matches expected_regexp is thrown by callable when invoked with arguments + args and keyword arguments kwargs. + + Alternatively, can be used as a context manager like `assert_raises`. + + Name of this function adheres to Python 3.2+ reference, but should work in + all versions down to 2.6. + + Notes + ----- + .. versionadded:: 1.9.0 + + """ + __tracebackhide__ = True # Hide traceback for py.test + + if sys.version_info.major >= 3: + funcname = _d.assertRaisesRegex + else: + # Only present in Python 2.7, missing from unittest in 2.6 + funcname = _d.assertRaisesRegexp + + return funcname(exception_class, expected_regexp, *args, **kwargs) + + +def decorate_methods(cls, decorator, testmatch=None): + """ + Apply a decorator to all methods in a class matching a regular expression. + + The given decorator is applied to all public methods of `cls` that are + matched by the regular expression `testmatch` + (``testmatch.search(methodname)``). Methods that are private, i.e. start + with an underscore, are ignored. + + Parameters + ---------- + cls : class + Class whose methods to decorate. + decorator : function + Decorator to apply to methods + testmatch : compiled regexp or str, optional + The regular expression. Default value is None, in which case the + nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``) + is used. + If `testmatch` is a string, it is compiled to a regular expression + first. + + """ + if testmatch is None: + testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep) + else: + testmatch = re.compile(testmatch) + cls_attr = cls.__dict__ + + # delayed import to reduce startup time + from inspect import isfunction + + methods = [_m for _m in cls_attr.values() if isfunction(_m)] + for function in methods: + try: + if hasattr(function, 'compat_func_name'): + funcname = function.compat_func_name + else: + funcname = function.__name__ + except AttributeError: + # not a function + continue + if testmatch.search(funcname) and not funcname.startswith('_'): + setattr(cls, funcname, decorator(function)) + return + + +def measure(code_str,times=1,label=None): + """ + Return elapsed time for executing code in the namespace of the caller. + + The supplied code string is compiled with the Python builtin ``compile``. + The precision of the timing is 10 milli-seconds. If the code will execute + fast on this timescale, it can be executed many times to get reasonable + timing accuracy. + + Parameters + ---------- + code_str : str + The code to be timed. + times : int, optional + The number of times the code is executed. Default is 1. The code is + only compiled once. + label : str, optional + A label to identify `code_str` with. This is passed into ``compile`` + as the second argument (for run-time error messages). + + Returns + ------- + elapsed : float + Total elapsed time in seconds for executing `code_str` `times` times. + + Examples + -------- + >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', + ... times=times) + >>> print("Time for a single execution : ", etime / times, "s") + Time for a single execution : 0.005 s + + """ + frame = sys._getframe(1) + locs, globs = frame.f_locals, frame.f_globals + + code = compile(code_str, + 'Test name: %s ' % label, + 'exec') + i = 0 + elapsed = jiffies() + while i < times: + i += 1 + exec(code, globs, locs) + elapsed = jiffies() - elapsed + return 0.01*elapsed + + +def _assert_valid_refcount(op): + """ + Check that ufuncs don't mishandle refcount of object `1`. + Used in a few regression tests. + """ + if not HAS_REFCOUNT: + return True + import numpy as np + + b = np.arange(100*100).reshape(100, 100) + c = b + i = 1 + + rc = sys.getrefcount(i) + for j in range(15): + d = op(b, c) + assert_(sys.getrefcount(i) >= rc) + del d # for pyflakes + + +def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True, + err_msg='', verbose=True): + """ + Raises an AssertionError if two objects are not equal up to desired + tolerance. + + The test is equivalent to ``allclose(actual, desired, rtol, atol)``. + It compares the difference between `actual` and `desired` to + ``atol + rtol * abs(desired)``. + + .. versionadded:: 1.5.0 + + Parameters + ---------- + actual : array_like + Array obtained. + desired : array_like + Array desired. + rtol : float, optional + Relative tolerance. + atol : float, optional + Absolute tolerance. + equal_nan : bool, optional. + If True, NaNs will compare equal. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_array_almost_equal_nulp, assert_array_max_ulp + + Examples + -------- + >>> x = [1e-5, 1e-3, 1e-1] + >>> y = np.arccos(np.cos(x)) + >>> assert_allclose(x, y, rtol=1e-5, atol=0) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + + def compare(x, y): + return np.core.numeric.isclose(x, y, rtol=rtol, atol=atol, + equal_nan=equal_nan) + + actual, desired = np.asanyarray(actual), np.asanyarray(desired) + header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol) + assert_array_compare(compare, actual, desired, err_msg=str(err_msg), + verbose=verbose, header=header, equal_nan=equal_nan) + + +def assert_array_almost_equal_nulp(x, y, nulp=1): + """ + Compare two arrays relatively to their spacing. + + This is a relatively robust method to compare two arrays whose amplitude + is variable. + + Parameters + ---------- + x, y : array_like + Input arrays. + nulp : int, optional + The maximum number of unit in the last place for tolerance (see Notes). + Default is 1. + + Returns + ------- + None + + Raises + ------ + AssertionError + If the spacing between `x` and `y` for one or more elements is larger + than `nulp`. + + See Also + -------- + assert_array_max_ulp : Check that all items of arrays differ in at most + N Units in the Last Place. + spacing : Return the distance between x and the nearest adjacent number. + + Notes + ----- + An assertion is raised if the following condition is not met:: + + abs(x - y) <= nulps * spacing(maximum(abs(x), abs(y))) + + Examples + -------- + >>> x = np.array([1., 1e-10, 1e-20]) + >>> eps = np.finfo(x.dtype).eps + >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) + + >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) + Traceback (most recent call last): + ... + AssertionError: X and Y are not equal to 1 ULP (max is 2) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + ax = np.abs(x) + ay = np.abs(y) + ref = nulp * np.spacing(np.where(ax > ay, ax, ay)) + if not np.all(np.abs(x-y) <= ref): + if np.iscomplexobj(x) or np.iscomplexobj(y): + msg = "X and Y are not equal to %d ULP" % nulp + else: + max_nulp = np.max(nulp_diff(x, y)) + msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp) + raise AssertionError(msg) + + +def assert_array_max_ulp(a, b, maxulp=1, dtype=None): + """ + Check that all items of arrays differ in at most N Units in the Last Place. + + Parameters + ---------- + a, b : array_like + Input arrays to be compared. + maxulp : int, optional + The maximum number of units in the last place that elements of `a` and + `b` can differ. Default is 1. + dtype : dtype, optional + Data-type to convert `a` and `b` to if given. Default is None. + + Returns + ------- + ret : ndarray + Array containing number of representable floating point numbers between + items in `a` and `b`. + + Raises + ------ + AssertionError + If one or more elements differ by more than `maxulp`. + + See Also + -------- + assert_array_almost_equal_nulp : Compare two arrays relatively to their + spacing. + + Examples + -------- + >>> a = np.linspace(0., 1., 100) + >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + ret = nulp_diff(a, b, dtype) + if not np.all(ret <= maxulp): + raise AssertionError("Arrays are not almost equal up to %g ULP" % + maxulp) + return ret + + +def nulp_diff(x, y, dtype=None): + """For each item in x and y, return the number of representable floating + points between them. + + Parameters + ---------- + x : array_like + first input array + y : array_like + second input array + dtype : dtype, optional + Data-type to convert `x` and `y` to if given. Default is None. + + Returns + ------- + nulp : array_like + number of representable floating point numbers between each item in x + and y. + + Examples + -------- + # By definition, epsilon is the smallest number such as 1 + eps != 1, so + # there should be exactly one ULP between 1 and 1 + eps + >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) + 1.0 + """ + import numpy as np + if dtype: + x = np.array(x, dtype=dtype) + y = np.array(y, dtype=dtype) + else: + x = np.array(x) + y = np.array(y) + + t = np.common_type(x, y) + if np.iscomplexobj(x) or np.iscomplexobj(y): + raise NotImplementedError("_nulp not implemented for complex array") + + x = np.array(x, dtype=t) + y = np.array(y, dtype=t) + + if not x.shape == y.shape: + raise ValueError("x and y do not have the same shape: %s - %s" % + (x.shape, y.shape)) + + def _diff(rx, ry, vdt): + diff = np.array(rx-ry, dtype=vdt) + return np.abs(diff) + + rx = integer_repr(x) + ry = integer_repr(y) + return _diff(rx, ry, t) + + +def _integer_repr(x, vdt, comp): + # Reinterpret binary representation of the float as sign-magnitude: + # take into account two-complement representation + # See also + # http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm + rx = x.view(vdt) + if not (rx.size == 1): + rx[rx < 0] = comp - rx[rx < 0] + else: + if rx < 0: + rx = comp - rx + + return rx + + +def integer_repr(x): + """Return the signed-magnitude interpretation of the binary representation of + x.""" + import numpy as np + if x.dtype == np.float16: + return _integer_repr(x, np.int16, np.int16(-2**15)) + elif x.dtype == np.float32: + return _integer_repr(x, np.int32, np.int32(-2**31)) + elif x.dtype == np.float64: + return _integer_repr(x, np.int64, np.int64(-2**63)) + else: + raise ValueError("Unsupported dtype %s" % x.dtype) + + +# The following two classes are copied from python 2.6 warnings module (context +# manager) +class WarningMessage(object): + + """ + Holds the result of a single showwarning() call. + + Deprecated in 1.8.0 + + Notes + ----- + `WarningMessage` is copied from the Python 2.6 warnings module, + so it can be used in NumPy with older Python versions. + + """ + + _WARNING_DETAILS = ("message", "category", "filename", "lineno", "file", + "line") + + def __init__(self, message, category, filename, lineno, file=None, + line=None): + local_values = locals() + for attr in self._WARNING_DETAILS: + setattr(self, attr, local_values[attr]) + if category: + self._category_name = category.__name__ + else: + self._category_name = None + + def __str__(self): + return ("{message : %r, category : %r, filename : %r, lineno : %s, " + "line : %r}" % (self.message, self._category_name, + self.filename, self.lineno, self.line)) + + +class WarningManager(object): + """ + A context manager that copies and restores the warnings filter upon + exiting the context. + + The 'record' argument specifies whether warnings should be captured by a + custom implementation of ``warnings.showwarning()`` and be appended to a + list returned by the context manager. Otherwise None is returned by the + context manager. The objects appended to the list are arguments whose + attributes mirror the arguments to ``showwarning()``. + + The 'module' argument is to specify an alternative module to the module + named 'warnings' and imported under that name. This argument is only useful + when testing the warnings module itself. + + Deprecated in 1.8.0 + + Notes + ----- + `WarningManager` is a copy of the ``catch_warnings`` context manager + from the Python 2.6 warnings module, with slight modifications. + It is copied so it can be used in NumPy with older Python versions. + + """ + + def __init__(self, record=False, module=None): + self._record = record + if module is None: + self._module = sys.modules['warnings'] + else: + self._module = module + self._entered = False + + def __enter__(self): + if self._entered: + raise RuntimeError("Cannot enter %r twice" % self) + self._entered = True + self._filters = self._module.filters + self._module.filters = self._filters[:] + self._showwarning = self._module.showwarning + if self._record: + log = [] + + def showwarning(*args, **kwargs): + log.append(WarningMessage(*args, **kwargs)) + self._module.showwarning = showwarning + return log + else: + return None + + def __exit__(self): + if not self._entered: + raise RuntimeError("Cannot exit %r without entering first" % self) + self._module.filters = self._filters + self._module.showwarning = self._showwarning + + +@contextlib.contextmanager +def _assert_warns_context(warning_class, name=None): + __tracebackhide__ = True # Hide traceback for py.test + with suppress_warnings() as sup: + l = sup.record(warning_class) + yield + if not len(l) > 0: + name_str = " when calling %s" % name if name is not None else "" + raise AssertionError("No warning raised" + name_str) + + +def assert_warns(warning_class, *args, **kwargs): + """ + Fail unless the given callable throws the specified warning. + + A warning of class warning_class should be thrown by the callable when + invoked with arguments args and keyword arguments kwargs. + If a different type of warning is thrown, it will not be caught. + + If called with all arguments other than the warning class omitted, may be + used as a context manager: + + with assert_warns(SomeWarning): + do_something() + + The ability to be used as a context manager is new in NumPy v1.11.0. + + .. versionadded:: 1.4.0 + + Parameters + ---------- + warning_class : class + The class defining the warning that `func` is expected to throw. + func : callable + The callable to test. + \\*args : Arguments + Arguments passed to `func`. + \\*\\*kwargs : Kwargs + Keyword arguments passed to `func`. + + Returns + ------- + The value returned by `func`. + + """ + if not args: + return _assert_warns_context(warning_class) + + func = args[0] + args = args[1:] + with _assert_warns_context(warning_class, name=func.__name__): + return func(*args, **kwargs) + + +@contextlib.contextmanager +def _assert_no_warnings_context(name=None): + __tracebackhide__ = True # Hide traceback for py.test + with warnings.catch_warnings(record=True) as l: + warnings.simplefilter('always') + yield + if len(l) > 0: + name_str = " when calling %s" % name if name is not None else "" + raise AssertionError("Got warnings%s: %s" % (name_str, l)) + + +def assert_no_warnings(*args, **kwargs): + """ + Fail if the given callable produces any warnings. + + If called with all arguments omitted, may be used as a context manager: + + with assert_no_warnings(): + do_something() + + The ability to be used as a context manager is new in NumPy v1.11.0. + + .. versionadded:: 1.7.0 + + Parameters + ---------- + func : callable + The callable to test. + \\*args : Arguments + Arguments passed to `func`. + \\*\\*kwargs : Kwargs + Keyword arguments passed to `func`. + + Returns + ------- + The value returned by `func`. + + """ + if not args: + return _assert_no_warnings_context() + + func = args[0] + args = args[1:] + with _assert_no_warnings_context(name=func.__name__): + return func(*args, **kwargs) + + +def _gen_alignment_data(dtype=float32, type='binary', max_size=24): + """ + generator producing data with different alignment and offsets + to test simd vectorization + + Parameters + ---------- + dtype : dtype + data type to produce + type : string + 'unary': create data for unary operations, creates one input + and output array + 'binary': create data for unary operations, creates two input + and output array + max_size : integer + maximum size of data to produce + + Returns + ------- + if type is 'unary' yields one output, one input array and a message + containing information on the data + if type is 'binary' yields one output array, two input array and a message + containing information on the data + + """ + ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s' + bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s' + for o in range(3): + for s in range(o + 2, max(o + 3, max_size)): + if type == 'unary': + inp = lambda: arange(s, dtype=dtype)[o:] + out = empty((s,), dtype=dtype)[o:] + yield out, inp(), ufmt % (o, o, s, dtype, 'out of place') + d = inp() + yield d, d, ufmt % (o, o, s, dtype, 'in place') + yield out[1:], inp()[:-1], ufmt % \ + (o + 1, o, s - 1, dtype, 'out of place') + yield out[:-1], inp()[1:], ufmt % \ + (o, o + 1, s - 1, dtype, 'out of place') + yield inp()[:-1], inp()[1:], ufmt % \ + (o, o + 1, s - 1, dtype, 'aliased') + yield inp()[1:], inp()[:-1], ufmt % \ + (o + 1, o, s - 1, dtype, 'aliased') + if type == 'binary': + inp1 = lambda: arange(s, dtype=dtype)[o:] + inp2 = lambda: arange(s, dtype=dtype)[o:] + out = empty((s,), dtype=dtype)[o:] + yield out, inp1(), inp2(), bfmt % \ + (o, o, o, s, dtype, 'out of place') + d = inp1() + yield d, d, inp2(), bfmt % \ + (o, o, o, s, dtype, 'in place1') + d = inp2() + yield d, inp1(), d, bfmt % \ + (o, o, o, s, dtype, 'in place2') + yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \ + (o + 1, o, o, s - 1, dtype, 'out of place') + yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \ + (o, o + 1, o, s - 1, dtype, 'out of place') + yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \ + (o, o, o + 1, s - 1, dtype, 'out of place') + yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \ + (o + 1, o, o, s - 1, dtype, 'aliased') + yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \ + (o, o + 1, o, s - 1, dtype, 'aliased') + yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \ + (o, o, o + 1, s - 1, dtype, 'aliased') + + +class IgnoreException(Exception): + "Ignoring this exception due to disabled feature" + pass + + +@contextlib.contextmanager +def tempdir(*args, **kwargs): + """Context manager to provide a temporary test folder. + + All arguments are passed as this to the underlying tempfile.mkdtemp + function. + + """ + tmpdir = mkdtemp(*args, **kwargs) + try: + yield tmpdir + finally: + shutil.rmtree(tmpdir) + + +@contextlib.contextmanager +def temppath(*args, **kwargs): + """Context manager for temporary files. + + Context manager that returns the path to a closed temporary file. Its + parameters are the same as for tempfile.mkstemp and are passed directly + to that function. The underlying file is removed when the context is + exited, so it should be closed at that time. + + Windows does not allow a temporary file to be opened if it is already + open, so the underlying file must be closed after opening before it + can be opened again. + + """ + fd, path = mkstemp(*args, **kwargs) + os.close(fd) + try: + yield path + finally: + os.remove(path) + + +class clear_and_catch_warnings(warnings.catch_warnings): + """ Context manager that resets warning registry for catching warnings + + Warnings can be slippery, because, whenever a warning is triggered, Python + adds a ``__warningregistry__`` member to the *calling* module. This makes + it impossible to retrigger the warning in this module, whatever you put in + the warnings filters. This context manager accepts a sequence of `modules` + as a keyword argument to its constructor and: + + * stores and removes any ``__warningregistry__`` entries in given `modules` + on entry; + * resets ``__warningregistry__`` to its previous state on exit. + + This makes it possible to trigger any warning afresh inside the context + manager without disturbing the state of warnings outside. + + For compatibility with Python 3.0, please consider all arguments to be + keyword-only. + + Parameters + ---------- + record : bool, optional + Specifies whether warnings should be captured by a custom + implementation of ``warnings.showwarning()`` and be appended to a list + returned by the context manager. Otherwise None is returned by the + context manager. The objects appended to the list are arguments whose + attributes mirror the arguments to ``showwarning()``. + modules : sequence, optional + Sequence of modules for which to reset warnings registry on entry and + restore on exit. To work correctly, all 'ignore' filters should + filter by one of these modules. + + Examples + -------- + >>> import warnings + >>> with clear_and_catch_warnings(modules=[np.core.fromnumeric]): + ... warnings.simplefilter('always') + ... warnings.filterwarnings('ignore', module='np.core.fromnumeric') + ... # do something that raises a warning but ignore those in + ... # np.core.fromnumeric + """ + class_modules = () + + def __init__(self, record=False, modules=()): + self.modules = set(modules).union(self.class_modules) + self._warnreg_copies = {} + super(clear_and_catch_warnings, self).__init__(record=record) + + def __enter__(self): + for mod in self.modules: + if hasattr(mod, '__warningregistry__'): + mod_reg = mod.__warningregistry__ + self._warnreg_copies[mod] = mod_reg.copy() + mod_reg.clear() + return super(clear_and_catch_warnings, self).__enter__() + + def __exit__(self, *exc_info): + super(clear_and_catch_warnings, self).__exit__(*exc_info) + for mod in self.modules: + if hasattr(mod, '__warningregistry__'): + mod.__warningregistry__.clear() + if mod in self._warnreg_copies: + mod.__warningregistry__.update(self._warnreg_copies[mod]) + + +class suppress_warnings(object): + """ + Context manager and decorator doing much the same as + ``warnings.catch_warnings``. + + However, it also provides a filter mechanism to work around + http://bugs.python.org/issue4180. + + This bug causes Python before 3.4 to not reliably show warnings again + after they have been ignored once (even within catch_warnings). It + means that no "ignore" filter can be used easily, since following + tests might need to see the warning. Additionally it allows easier + specificity for testing warnings and can be nested. + + Parameters + ---------- + forwarding_rule : str, optional + One of "always", "once", "module", or "location". Analogous to + the usual warnings module filter mode, it is useful to reduce + noise mostly on the outmost level. Unsuppressed and unrecorded + warnings will be forwarded based on this rule. Defaults to "always". + "location" is equivalent to the warnings "default", match by exact + location the warning warning originated from. + + Notes + ----- + Filters added inside the context manager will be discarded again + when leaving it. Upon entering all filters defined outside a + context will be applied automatically. + + When a recording filter is added, matching warnings are stored in the + ``log`` attribute as well as in the list returned by ``record``. + + If filters are added and the ``module`` keyword is given, the + warning registry of this module will additionally be cleared when + applying it, entering the context, or exiting it. This could cause + warnings to appear a second time after leaving the context if they + were configured to be printed once (default) and were already + printed before the context was entered. + + Nesting this context manager will work as expected when the + forwarding rule is "always" (default). Unfiltered and unrecorded + warnings will be passed out and be matched by the outer level. + On the outmost level they will be printed (or caught by another + warnings context). The forwarding rule argument can modify this + behaviour. + + Like ``catch_warnings`` this context manager is not threadsafe. + + Examples + -------- + >>> with suppress_warnings() as sup: + ... sup.filter(DeprecationWarning, "Some text") + ... sup.filter(module=np.ma.core) + ... log = sup.record(FutureWarning, "Does this occur?") + ... command_giving_warnings() + ... # The FutureWarning was given once, the filtered warnings were + ... # ignored. All other warnings abide outside settings (may be + ... # printed/error) + ... assert_(len(log) == 1) + ... assert_(len(sup.log) == 1) # also stored in log attribute + + Or as a decorator: + + >>> sup = suppress_warnings() + >>> sup.filter(module=np.ma.core) # module must match exact + >>> @sup + >>> def some_function(): + ... # do something which causes a warning in np.ma.core + ... pass + """ + def __init__(self, forwarding_rule="always"): + self._entered = False + + # Suppressions are either instance or defined inside one with block: + self._suppressions = [] + + if forwarding_rule not in {"always", "module", "once", "location"}: + raise ValueError("unsupported forwarding rule.") + self._forwarding_rule = forwarding_rule + + def _clear_registries(self): + if hasattr(warnings, "_filters_mutated"): + # clearing the registry should not be necessary on new pythons, + # instead the filters should be mutated. + warnings._filters_mutated() + return + # Simply clear the registry, this should normally be harmless, + # note that on new pythons it would be invalidated anyway. + for module in self._tmp_modules: + if hasattr(module, "__warningregistry__"): + module.__warningregistry__.clear() + + def _filter(self, category=Warning, message="", module=None, record=False): + if record: + record = [] # The log where to store warnings + else: + record = None + if self._entered: + if module is None: + warnings.filterwarnings( + "always", category=category, message=message) + else: + module_regex = module.__name__.replace('.', r'\.') + '$' + warnings.filterwarnings( + "always", category=category, message=message, + module=module_regex) + self._tmp_modules.add(module) + self._clear_registries() + + self._tmp_suppressions.append( + (category, message, re.compile(message, re.I), module, record)) + else: + self._suppressions.append( + (category, message, re.compile(message, re.I), module, record)) + + return record + + def filter(self, category=Warning, message="", module=None): + """ + Add a new suppressing filter or apply it if the state is entered. + + Parameters + ---------- + category : class, optional + Warning class to filter + message : string, optional + Regular expression matching the warning message. + module : module, optional + Module to filter for. Note that the module (and its file) + must match exactly and cannot be a submodule. This may make + it unreliable for external modules. + + Notes + ----- + When added within a context, filters are only added inside + the context and will be forgotten when the context is exited. + """ + self._filter(category=category, message=message, module=module, + record=False) + + def record(self, category=Warning, message="", module=None): + """ + Append a new recording filter or apply it if the state is entered. + + All warnings matching will be appended to the ``log`` attribute. + + Parameters + ---------- + category : class, optional + Warning class to filter + message : string, optional + Regular expression matching the warning message. + module : module, optional + Module to filter for. Note that the module (and its file) + must match exactly and cannot be a submodule. This may make + it unreliable for external modules. + + Returns + ------- + log : list + A list which will be filled with all matched warnings. + + Notes + ----- + When added within a context, filters are only added inside + the context and will be forgotten when the context is exited. + """ + return self._filter(category=category, message=message, module=module, + record=True) + + def __enter__(self): + if self._entered: + raise RuntimeError("cannot enter suppress_warnings twice.") + + self._orig_show = warnings.showwarning + self._filters = warnings.filters + warnings.filters = self._filters[:] + + self._entered = True + self._tmp_suppressions = [] + self._tmp_modules = set() + self._forwarded = set() + + self.log = [] # reset global log (no need to keep same list) + + for cat, mess, _, mod, log in self._suppressions: + if log is not None: + del log[:] # clear the log + if mod is None: + warnings.filterwarnings( + "always", category=cat, message=mess) + else: + module_regex = mod.__name__.replace('.', r'\.') + '$' + warnings.filterwarnings( + "always", category=cat, message=mess, + module=module_regex) + self._tmp_modules.add(mod) + warnings.showwarning = self._showwarning + self._clear_registries() + + return self + + def __exit__(self, *exc_info): + warnings.showwarning = self._orig_show + warnings.filters = self._filters + self._clear_registries() + self._entered = False + del self._orig_show + del self._filters + + def _showwarning(self, message, category, filename, lineno, + *args, **kwargs): + use_warnmsg = kwargs.pop("use_warnmsg", None) + for cat, _, pattern, mod, rec in ( + self._suppressions + self._tmp_suppressions)[::-1]: + if (issubclass(category, cat) and + pattern.match(message.args[0]) is not None): + if mod is None: + # Message and category match, either recorded or ignored + if rec is not None: + msg = WarningMessage(message, category, filename, + lineno, **kwargs) + self.log.append(msg) + rec.append(msg) + return + # Use startswith, because warnings strips the c or o from + # .pyc/.pyo files. + elif mod.__file__.startswith(filename): + # The message and module (filename) match + if rec is not None: + msg = WarningMessage(message, category, filename, + lineno, **kwargs) + self.log.append(msg) + rec.append(msg) + return + + # There is no filter in place, so pass to the outside handler + # unless we should only pass it once + if self._forwarding_rule == "always": + if use_warnmsg is None: + self._orig_show(message, category, filename, lineno, + *args, **kwargs) + else: + self._orig_showmsg(use_warnmsg) + return + + if self._forwarding_rule == "once": + signature = (message.args, category) + elif self._forwarding_rule == "module": + signature = (message.args, category, filename) + elif self._forwarding_rule == "location": + signature = (message.args, category, filename, lineno) + + if signature in self._forwarded: + return + self._forwarded.add(signature) + if use_warnmsg is None: + self._orig_show(message, category, filename, lineno, *args, + **kwargs) + else: + self._orig_showmsg(use_warnmsg) + + def __call__(self, func): + """ + Function decorator to apply certain suppressions to a whole + function. + """ + @wraps(func) + def new_func(*args, **kwargs): + with self: + return func(*args, **kwargs) + + return new_func -- cgit v1.2.1 From 5c3d52405b647bc69185f657ed4c180c02ac14f7 Mon Sep 17 00:00:00 2001 From: Eric Wieser Date: Thu, 12 Apr 2018 00:27:11 -0700 Subject: TST: Extract a helper function to test for reference cycles This also means we can now test that our test is actually able to detect the type of failure we expect Trying to give myself some tools to debug the failure at https://github.com/numpy/numpy/pull/10882/files#r180813166 --- numpy/testing/_private/utils.py | 64 ++++++++++++++++++++++++++++++++++++++++- 1 file changed, 63 insertions(+), 1 deletion(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 507ecb1e2..4a113f12e 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -7,6 +7,7 @@ from __future__ import division, absolute_import, print_function import os import sys import re +import gc import operator import warnings from functools import partial, wraps @@ -35,7 +36,7 @@ __all__ = [ 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', 'HAS_REFCOUNT', 'suppress_warnings', 'assert_array_compare', - '_assert_valid_refcount', '_gen_alignment_data', + '_assert_valid_refcount', '_gen_alignment_data', 'assert_no_gc_cycles', ] @@ -2272,3 +2273,64 @@ class suppress_warnings(object): return func(*args, **kwargs) return new_func + + +@contextlib.contextmanager +def _assert_no_gc_cycles_context(name=None): + __tracebackhide__ = True # Hide traceback for py.test + + # not meaningful to test if there is no refcounting + if not HAS_REFCOUNT: + return + + assert_(gc.isenabled()) + gc.disable() + try: + gc.collect() + yield + # gc.collect returns the number of unreachable objects in cycles that + # were found -- we are checking that no cycles were created in the context + n_objects_in_cycles = gc.collect() + finally: + gc.enable() + + if n_objects_in_cycles: + name_str = " when calling %s" % name if name is not None else "" + raise AssertionError( + "Reference cycles were found{}: {} objects were collected" + .format(name_str, n_objects_in_cycles)) + + +def assert_no_gc_cycles(*args, **kwargs): + """ + Fail if the given callable produces any reference cycles. + + If called with all arguments omitted, may be used as a context manager: + + with assert_no_gc_cycles(): + do_something() + + .. versionadded:: 1.15.0 + + Parameters + ---------- + func : callable + The callable to test. + \\*args : Arguments + Arguments passed to `func`. + \\*\\*kwargs : Kwargs + Keyword arguments passed to `func`. + + Returns + ------- + Nothing. The result is deliberately discarded to ensure that all cycles + are found. + + """ + if not args: + return _assert_no_gc_cycles_context() + + func = args[0] + args = args[1:] + with _assert_no_gc_cycles_context(name=func.__name__): + func(*args, **kwargs) -- cgit v1.2.1 From d21ec05eb006c072e4fd8c5fe1bd63619378aded Mon Sep 17 00:00:00 2001 From: Eric Wieser Date: Thu, 12 Apr 2018 00:42:18 -0700 Subject: ENH: Show the full list of leaked objects An example output for the test added in the previous commit is: AssertionError: Reference cycles were found when calling make_cycle: 1 objects were collected, of which 1 are shown below: list object with id=2279664872136: [, ] --- numpy/testing/_private/utils.py | 23 +++++++++++++++++++++-- 1 file changed, 21 insertions(+), 2 deletions(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 4a113f12e..0c9fd644c 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -15,6 +15,7 @@ import shutil import contextlib from tempfile import mkdtemp, mkstemp from unittest.case import SkipTest +import pprint from numpy.core import( float32, empty, arange, array_repr, ndarray, isnat, array) @@ -2285,20 +2286,38 @@ def _assert_no_gc_cycles_context(name=None): assert_(gc.isenabled()) gc.disable() + gc_debug = gc.get_debug() try: gc.collect() + gc.set_debug(gc.DEBUG_SAVEALL) yield # gc.collect returns the number of unreachable objects in cycles that # were found -- we are checking that no cycles were created in the context n_objects_in_cycles = gc.collect() + objects_in_cycles = gc.garbage[:] finally: + del gc.garbage[:] + gc.set_debug(gc_debug) gc.enable() if n_objects_in_cycles: name_str = " when calling %s" % name if name is not None else "" raise AssertionError( - "Reference cycles were found{}: {} objects were collected" - .format(name_str, n_objects_in_cycles)) + "Reference cycles were found{}: {} objects were collected, " + "of which {} are shown below:{}" + .format( + name_str, + n_objects_in_cycles, + len(objects_in_cycles), + ''.join( + "\n {} object with id={}:\n {}".format( + type(o).__name__, + id(o), + pprint.pformat(o).replace('\n', '\n ') + ) for o in objects_in_cycles + ) + ) + ) def assert_no_gc_cycles(*args, **kwargs): -- cgit v1.2.1 From 3ff0c5c82b8abc4c94b1801a13f488778631f38a Mon Sep 17 00:00:00 2001 From: Eric Wieser Date: Thu, 12 Apr 2018 22:07:58 -0700 Subject: BUG: Ensure the garbage is clear first in assert_no_gc_cycles It's not always possible to guarantee this, so also adds a test to verify that we don't hang --- numpy/testing/_private/utils.py | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 0c9fd644c..b0c0b0c48 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -2288,7 +2288,14 @@ def _assert_no_gc_cycles_context(name=None): gc.disable() gc_debug = gc.get_debug() try: - gc.collect() + for i in range(100): + if gc.collect() == 0: + break + else: + raise RuntimeError( + "Unable to fully collect garbage - perhaps a __del__ method is " + "creating more reference cycles?") + gc.set_debug(gc.DEBUG_SAVEALL) yield # gc.collect returns the number of unreachable objects in cycles that -- cgit v1.2.1 From e3f6bf79abcbda070556a8a524080c48be48f3a4 Mon Sep 17 00:00:00 2001 From: Marten van Kerkwijk Date: Sat, 19 May 2018 12:53:53 -0400 Subject: BUG: Ensure that fully masked arrays pass assert_array_equal. The underlying problem is that ma.all() evaluates to masked, which is falsy, and thus triggers test failures. --- numpy/testing/_private/utils.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index b0c0b0c48..c420e1fb5 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -771,7 +771,11 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, reduced = val.ravel() cond = reduced.all() reduced = reduced.tolist() - if not cond: + # The below comparison is a hack to ensure that fully masked + # results, for which val.ravel().all() returns np.ma.masked, + # do not trigger a failure (np.ma.masked != True evaluates as + # np.ma.masked, which is falsy). + if cond != True: match = 100-100.0*reduced.count(1)/len(reduced) msg = build_err_msg([x, y], err_msg -- cgit v1.2.1 From 055620ccd669ea56d83391e107a467824cd5b60b Mon Sep 17 00:00:00 2001 From: Matti Picus Date: Fri, 25 May 2018 02:54:02 +0200 Subject: TST: disable gc in refcount test (#11158) The vectorize version of this test was failing consistently on several of the Appveyor builds, ever since a recent pytest upgrade. Our theory is that by random chance, things changed so that during the call to vectorize(op).__call__, python started running a garbage collection, which perturbed the refcounts that this test is checking. (Specifically this test is doing a weird thing and checking that the refcount of the object 1 doesn't decrease, and it's very plausible that some random bit of garbage was holding a reference to this object.) Disabling the gc during the test makes this kind of refcount assertion more reliable, and seems to have fixed the appveyor builds, so I guess it's good. --- numpy/testing/_private/utils.py | 14 +++++++++----- 1 file changed, 9 insertions(+), 5 deletions(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index c420e1fb5..a7935f175 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -1373,16 +1373,20 @@ def _assert_valid_refcount(op): """ if not HAS_REFCOUNT: return True - import numpy as np + import numpy as np, gc b = np.arange(100*100).reshape(100, 100) c = b i = 1 - rc = sys.getrefcount(i) - for j in range(15): - d = op(b, c) - assert_(sys.getrefcount(i) >= rc) + gc.disable() + try: + rc = sys.getrefcount(i) + for j in range(15): + d = op(b, c) + assert_(sys.getrefcount(i) >= rc) + finally: + gc.enable() del d # for pyflakes -- cgit v1.2.1 From 5718b3306303b4899c017641a9282714dcf8c9b8 Mon Sep 17 00:00:00 2001 From: Marten van Kerkwijk Date: Sat, 19 May 2018 12:21:47 -0400 Subject: BUG,MAINT: Ensure masked elements can be tested against nan and inf. The removal of nan and inf from arrays that are compared using test routines like assert_array_equal treated the two arrays separately, which for masked arrays meant that some elements would not be removed when they should have been. This PR corrects this. --- numpy/testing/_private/utils.py | 67 ++++++++++++++++++----------------------- 1 file changed, 29 insertions(+), 38 deletions(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index a7935f175..5b7e35366 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -685,7 +685,7 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', precision=6, equal_nan=True, equal_inf=True): __tracebackhide__ = True # Hide traceback for py.test - from numpy.core import array, isnan, isinf, any, inf + from numpy.core import array, isnan, any, inf, ndim x = array(x, copy=False, subok=True) y = array(y, copy=False, subok=True) @@ -695,9 +695,14 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, def istime(x): return x.dtype.char in "Mm" - def chk_same_position(x_id, y_id, hasval='nan'): - """Handling nan/inf: check that x and y have the nan/inf at the same - locations.""" + def func_assert_same_pos(x, y, func=isnan, hasval='nan'): + """Handling nan/inf: combine results of running func on x and y, + checking that they are True at the same locations.""" + x_id = func(x) + y_id = func(y) + if not any(x_id) and not any(y_id): + return False + try: assert_array_equal(x_id, y_id) except AssertionError: @@ -706,6 +711,9 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, % (hasval), verbose=verbose, header=header, names=('x', 'y'), precision=precision) raise AssertionError(msg) + # If there is a scalar, then here we know the array has the same + # flag as it everywhere, so we should return the scalar flag. + return x_id if x_id.ndim == 0 else y_id try: cond = (x.shape == () or y.shape == ()) or x.shape == y.shape @@ -718,49 +726,32 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, names=('x', 'y'), precision=precision) raise AssertionError(msg) + flagged = False if isnumber(x) and isnumber(y): - has_nan = has_inf = False if equal_nan: - x_isnan, y_isnan = isnan(x), isnan(y) - # Validate that NaNs are in the same place - has_nan = any(x_isnan) or any(y_isnan) - if has_nan: - chk_same_position(x_isnan, y_isnan, hasval='nan') + flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan') if equal_inf: - x_isinf, y_isinf = isinf(x), isinf(y) - # Validate that infinite values are in the same place - has_inf = any(x_isinf) or any(y_isinf) - if has_inf: - # Check +inf and -inf separately, since they are different - chk_same_position(x == +inf, y == +inf, hasval='+inf') - chk_same_position(x == -inf, y == -inf, hasval='-inf') - - if has_nan and has_inf: - x = x[~(x_isnan | x_isinf)] - y = y[~(y_isnan | y_isinf)] - elif has_nan: - x = x[~x_isnan] - y = y[~y_isnan] - elif has_inf: - x = x[~x_isinf] - y = y[~y_isinf] - - # Only do the comparison if actual values are left - if x.size == 0: - return + flagged |= func_assert_same_pos(x, y, + func=lambda xy: xy == +inf, + hasval='+inf') + flagged |= func_assert_same_pos(x, y, + func=lambda xy: xy == -inf, + hasval='-inf') elif istime(x) and istime(y): # If one is datetime64 and the other timedelta64 there is no point if equal_nan and x.dtype.type == y.dtype.type: - x_isnat, y_isnat = isnat(x), isnat(y) + flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT") - if any(x_isnat) or any(y_isnat): - chk_same_position(x_isnat, y_isnat, hasval="NaT") - - if any(x_isnat) or any(y_isnat): - x = x[~x_isnat] - y = y[~y_isnat] + if ndim(flagged): + x, y = x[~flagged], y[~flagged] + # Only do the comparison if actual values are left + if x.size == 0: + return + elif flagged: + # no sense doing comparison if everything is flagged. + return val = comparison(x, y) -- cgit v1.2.1 From d4e4f1f39fba4bfa1df4ebd357f91ccdb35ebdaf Mon Sep 17 00:00:00 2001 From: Eric Wieser Date: Mon, 4 Jun 2018 01:05:19 -0700 Subject: MAINT: Remove dead code backporting py2.6 warnings Since this is now in `np.testing._private`, it's no longer usable by the outside world anyway --- numpy/testing/_private/utils.py | 92 ----------------------------------------- 1 file changed, 92 deletions(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index a7935f175..773d7098e 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -1639,98 +1639,6 @@ def integer_repr(x): raise ValueError("Unsupported dtype %s" % x.dtype) -# The following two classes are copied from python 2.6 warnings module (context -# manager) -class WarningMessage(object): - - """ - Holds the result of a single showwarning() call. - - Deprecated in 1.8.0 - - Notes - ----- - `WarningMessage` is copied from the Python 2.6 warnings module, - so it can be used in NumPy with older Python versions. - - """ - - _WARNING_DETAILS = ("message", "category", "filename", "lineno", "file", - "line") - - def __init__(self, message, category, filename, lineno, file=None, - line=None): - local_values = locals() - for attr in self._WARNING_DETAILS: - setattr(self, attr, local_values[attr]) - if category: - self._category_name = category.__name__ - else: - self._category_name = None - - def __str__(self): - return ("{message : %r, category : %r, filename : %r, lineno : %s, " - "line : %r}" % (self.message, self._category_name, - self.filename, self.lineno, self.line)) - - -class WarningManager(object): - """ - A context manager that copies and restores the warnings filter upon - exiting the context. - - The 'record' argument specifies whether warnings should be captured by a - custom implementation of ``warnings.showwarning()`` and be appended to a - list returned by the context manager. Otherwise None is returned by the - context manager. The objects appended to the list are arguments whose - attributes mirror the arguments to ``showwarning()``. - - The 'module' argument is to specify an alternative module to the module - named 'warnings' and imported under that name. This argument is only useful - when testing the warnings module itself. - - Deprecated in 1.8.0 - - Notes - ----- - `WarningManager` is a copy of the ``catch_warnings`` context manager - from the Python 2.6 warnings module, with slight modifications. - It is copied so it can be used in NumPy with older Python versions. - - """ - - def __init__(self, record=False, module=None): - self._record = record - if module is None: - self._module = sys.modules['warnings'] - else: - self._module = module - self._entered = False - - def __enter__(self): - if self._entered: - raise RuntimeError("Cannot enter %r twice" % self) - self._entered = True - self._filters = self._module.filters - self._module.filters = self._filters[:] - self._showwarning = self._module.showwarning - if self._record: - log = [] - - def showwarning(*args, **kwargs): - log.append(WarningMessage(*args, **kwargs)) - self._module.showwarning = showwarning - return log - else: - return None - - def __exit__(self): - if not self._entered: - raise RuntimeError("Cannot exit %r without entering first" % self) - self._module.filters = self._filters - self._module.showwarning = self._showwarning - - @contextlib.contextmanager def _assert_warns_context(warning_class, name=None): __tracebackhide__ = True # Hide traceback for py.test -- cgit v1.2.1 From 3ad49aaaf497c6daadb9b66f295f58a315476e01 Mon Sep 17 00:00:00 2001 From: Marten van Kerkwijk Date: Sun, 27 May 2018 13:15:16 -0400 Subject: MAINT: clean up assert_array_compare a bit further. This brought to light two bugs in tests, which are fixed here, viz., that a sample ndarray subclass that tested propagation of an added parameter was incomplete, in that in propagating the parameter in __array_wrap__ it assumed it was there on self, but that assumption could be broken when a view of self was taken (as is done by x[~flagged] in the test routine), since there was no __array_finalize__ defined. The other subclass bug counted, incorrectly, on only needing to provide one type of comparison, the __lt__ being explicitly tested. But flags are compared with __eq__ and those flags will have the same subclass. --- numpy/testing/_private/utils.py | 23 +++++++++++++---------- 1 file changed, 13 insertions(+), 10 deletions(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 5b7e35366..f8bfe0ba9 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -685,7 +685,7 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', precision=6, equal_nan=True, equal_inf=True): __tracebackhide__ = True # Hide traceback for py.test - from numpy.core import array, isnan, any, inf, ndim + from numpy.core import array, isnan, inf, bool_ x = array(x, copy=False, subok=True) y = array(y, copy=False, subok=True) @@ -698,14 +698,12 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, def func_assert_same_pos(x, y, func=isnan, hasval='nan'): """Handling nan/inf: combine results of running func on x and y, checking that they are True at the same locations.""" + # Both the != True comparison here and the cast to bool_ at + # the end are done to deal with `masked`, which cannot be + # compared usefully, and for which .all() yields masked. x_id = func(x) y_id = func(y) - if not any(x_id) and not any(y_id): - return False - - try: - assert_array_equal(x_id, y_id) - except AssertionError: + if (x_id == y_id).all() != True: msg = build_err_msg([x, y], err_msg + '\nx and y %s location mismatch:' % (hasval), verbose=verbose, header=header, @@ -713,7 +711,12 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, raise AssertionError(msg) # If there is a scalar, then here we know the array has the same # flag as it everywhere, so we should return the scalar flag. - return x_id if x_id.ndim == 0 else y_id + if x_id.ndim == 0: + return bool_(x_id) + elif y_id.ndim == 0: + return bool_(y_id) + else: + return y_id try: cond = (x.shape == () or y.shape == ()) or x.shape == y.shape @@ -726,7 +729,7 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, names=('x', 'y'), precision=precision) raise AssertionError(msg) - flagged = False + flagged = bool_(False) if isnumber(x) and isnumber(y): if equal_nan: flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan') @@ -744,7 +747,7 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, if equal_nan and x.dtype.type == y.dtype.type: flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT") - if ndim(flagged): + if flagged.ndim > 0: x, y = x[~flagged], y[~flagged] # Only do the comparison if actual values are left if x.size == 0: -- cgit v1.2.1 From 32b7aec0edce7f3bf9e6b7fac5a7825a21b85876 Mon Sep 17 00:00:00 2001 From: Charles Harris Date: Mon, 4 Jun 2018 07:39:40 -0600 Subject: BUG: Import WarningMessage from warnings. --- numpy/testing/_private/utils.py | 1 + 1 file changed, 1 insertion(+) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 773d7098e..528d28b06 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -15,6 +15,7 @@ import shutil import contextlib from tempfile import mkdtemp, mkstemp from unittest.case import SkipTest +from warnings import WarningMessage import pprint from numpy.core import( -- cgit v1.2.1 From 83828f52b287fefb3d8753a21bd3441997a4d687 Mon Sep 17 00:00:00 2001 From: Mike Toews Date: Sat, 16 Jun 2018 18:18:19 +1200 Subject: HTTP -> HTTPS, and other linkrot fixes --- numpy/testing/_private/utils.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index 032c4a116..f821fbebd 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -69,7 +69,7 @@ def import_nose(): if not nose_is_good: msg = ('Need nose >= %d.%d.%d for tests - see ' - 'http://nose.readthedocs.io' % + 'https://nose.readthedocs.io' % minimum_nose_version) raise ImportError(msg) @@ -177,7 +177,7 @@ if os.name == 'nt': # thread's CPU usage is either 0 or 100). To read counters like this, # you should copy this function, but keep the counter open, and call # CollectQueryData() each time you need to know. - # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp + # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp (dead link) # My older explanation for this was that the "AddCounter" process forced # the CPU to 100%, but the above makes more sense :) import win32pdh @@ -1609,7 +1609,7 @@ def _integer_repr(x, vdt, comp): # Reinterpret binary representation of the float as sign-magnitude: # take into account two-complement representation # See also - # http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm + # https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ rx = x.view(vdt) if not (rx.size == 1): rx[rx < 0] = comp - rx[rx < 0] @@ -1917,7 +1917,7 @@ class suppress_warnings(object): ``warnings.catch_warnings``. However, it also provides a filter mechanism to work around - http://bugs.python.org/issue4180. + https://bugs.python.org/issue4180. This bug causes Python before 3.4 to not reliably show warnings again after they have been ignored once (even within catch_warnings). It -- cgit v1.2.1 From 37e4d58f2ec36de226917d215f3dbe4c893da752 Mon Sep 17 00:00:00 2001 From: Sho Nakamura Date: Sat, 14 Jul 2018 00:06:48 +0900 Subject: BUG: Make assert_string_equal check str equality simply without regex --- numpy/testing/_private/utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'numpy/testing/_private/utils.py') diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py index f821fbebd..0e2f8ba91 100644 --- a/numpy/testing/_private/utils.py +++ b/numpy/testing/_private/utils.py @@ -1075,7 +1075,7 @@ def assert_string_equal(actual, desired): raise AssertionError(repr(type(actual))) if not isinstance(desired, str): raise AssertionError(repr(type(desired))) - if re.match(r'\A'+desired+r'\Z', actual, re.M): + if desired == actual: return diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1))) @@ -1099,7 +1099,7 @@ def assert_string_equal(actual, desired): l.append(d3) else: diff.insert(0, d3) - if re.match(r'\A'+d2[2:]+r'\Z', d1[2:]): + if d2[2:] == d1[2:]: continue diff_list.extend(l) continue -- cgit v1.2.1