========================= NumPy 1.6.0 Release Notes ========================= This release includes several new features as well as numerous bug fixes and improved documentation. It is backward compatible with the 1.5.0 release, and supports Python 2.4 - 2.7 and 3.1 - 3.2. Highlights ========== * Re-introduction of datetime dtype support to deal with dates in arrays. * A new 16-bit floating point type. * A new iterator, which improves performance of many functions. New features ============ New 16-bit floating point type ------------------------------ This release adds support for the IEEE 754-2008 binary16 format, available as the data type ``numpy.half``. Within Python, the type behaves similarly to `float` or `double`, and C extensions can add support for it with the exposed half-float API. Einstein summation convention evaluation function ------------------------------------------------- Other new functions ------------------- ``numpy.ravel_coords`` : Converts a tuple of coordinate arrays into an array of flat indices, applying boundary modes to the coordinates. ``numpy.slogdet`` : Compute the sign and (natural) logarithm of the determinant of an array. Changes ======= Removed features ================ ``numpy.fft`` ------------- The functions `refft`, `refft2`, `refftn`, `irefft`, `irefft2`, `irefftn`, which were aliases for the same functions without the 'e' in the name, were removed. ``numpy.memmap`` ---------------- The `sync()` and `close()` methods of memmap were removed. Use `flush()` and "del memmap" instead. ``numpy.lib`` ------------- The deprecated functions ``numpy.unique1d``, ``numpy.setmember1d``, ``numpy.intersect1d_nu`` and ``numpy.lib.ufunclike.log2`` were removed. ``numpy.ma`` ------------ Several deprecated items were removed from the ``numpy.ma`` module:: * ``numpy.ma.MaskedArray`` "raw_data" method * ``numpy.ma.MaskedArray`` constructor "flag" keyword * ``numpy.ma.make_mask`` "flag" keyword * ``numpy.ma.allclose`` "fill_value" keyword ``numpy.distutils`` ------------------- The ``numpy.get_numpy_include`` function was removed, use ``numpy.get_include`` instead.