.. currentmodule:: numpy.random Random Generator ---------------- The `~Generator` provides access to a wide range of distributions, and served as a replacement for :class:`~numpy.random.RandomState`. The main difference between the two is that ``Generator`` relies on an additional BitGenerator to manage state and generate the random bits, which are then transformed into random values from useful distributions. The default BitGenerator used by ``Generator`` is `~PCG64`. The BitGenerator can be changed by passing an instantized BitGenerator to ``Generator``. .. autofunction:: default_rng .. autoclass:: Generator :exclude-members: Accessing the BitGenerator ========================== .. autosummary:: :toctree: generated/ ~numpy.random.Generator.bit_generator Simple random data ================== .. autosummary:: :toctree: generated/ ~numpy.random.Generator.integers ~numpy.random.Generator.random ~numpy.random.Generator.choice ~numpy.random.Generator.bytes Permutations ============ .. autosummary:: :toctree: generated/ ~numpy.random.Generator.shuffle ~numpy.random.Generator.permutation Distributions ============= .. autosummary:: :toctree: generated/ ~numpy.random.Generator.beta ~numpy.random.Generator.binomial ~numpy.random.Generator.chisquare ~numpy.random.Generator.dirichlet ~numpy.random.Generator.exponential ~numpy.random.Generator.f ~numpy.random.Generator.gamma ~numpy.random.Generator.geometric ~numpy.random.Generator.gumbel ~numpy.random.Generator.hypergeometric ~numpy.random.Generator.laplace ~numpy.random.Generator.logistic ~numpy.random.Generator.lognormal ~numpy.random.Generator.logseries ~numpy.random.Generator.multinomial ~numpy.random.Generator.multivariate_hypergeometric ~numpy.random.Generator.multivariate_normal ~numpy.random.Generator.negative_binomial ~numpy.random.Generator.noncentral_chisquare ~numpy.random.Generator.noncentral_f ~numpy.random.Generator.normal ~numpy.random.Generator.pareto ~numpy.random.Generator.poisson ~numpy.random.Generator.power ~numpy.random.Generator.rayleigh ~numpy.random.Generator.standard_cauchy ~numpy.random.Generator.standard_exponential ~numpy.random.Generator.standard_gamma ~numpy.random.Generator.standard_normal ~numpy.random.Generator.standard_t ~numpy.random.Generator.triangular ~numpy.random.Generator.uniform ~numpy.random.Generator.vonmises ~numpy.random.Generator.wald ~numpy.random.Generator.weibull ~numpy.random.Generator.zipf