.. _new-or-different: .. currentmodule:: numpy.random What's New or Different ----------------------- .. warning:: The Box-Muller method used to produce NumPy's normals is no longer available in `Generator`. It is not possible to reproduce the exact random values using ``Generator`` for the normal distribution or any other distribution that relies on the normal such as the `Generator.gamma` or `Generator.standard_t`. If you require bitwise backward compatible streams, use `RandomState`, i.e., `RandomState.gamma` or `RandomState.standard_t`. Quick comparison of legacy :ref:`mtrand ` to the new `Generator` ================== ==================== ============= Feature Older Equivalent Notes ------------------ -------------------- ------------- `~.Generator` `~.RandomState` ``Generator`` requires a stream source, called a `BitGenerator` A number of these are provided. ``RandomState`` uses the Mersenne Twister `~.MT19937` by default, but can also be instantiated with any BitGenerator. ------------------ -------------------- ------------- ``random`` ``random_sample``, Access the values in a BitGenerator, ``rand`` convert them to ``float64`` in the interval ``[0.0.,`` `` 1.0)``. In addition to the ``size`` kwarg, now supports ``dtype='d'`` or ``dtype='f'``, and an ``out`` kwarg to fill a user- supplied array. Many other distributions are also supported. ------------------ -------------------- ------------- ``integers`` ``randint``, Use the ``endpoint`` kwarg to adjust ``random_integers`` the inclusion or exclusion of the ``high`` interval endpoint ================== ==================== ============= And in more detail: * Simulate from the complex normal distribution (`~.Generator.complex_normal`) * The normal, exponential and gamma generators use 256-step Ziggurat methods which are 2-10 times faster than NumPy's default implementation in `~.Generator.standard_normal`, `~.Generator.standard_exponential` or `~.Generator.standard_gamma`. .. ipython:: python from numpy.random import Generator, PCG64 import numpy.random rng = Generator(PCG64()) %timeit -n 1 rng.standard_normal(100000) %timeit -n 1 numpy.random.standard_normal(100000) .. ipython:: python %timeit -n 1 rng.standard_exponential(100000) %timeit -n 1 numpy.random.standard_exponential(100000) .. ipython:: python %timeit -n 1 rng.standard_gamma(3.0, 100000) %timeit -n 1 numpy.random.standard_gamma(3.0, 100000) * `~.Generator.integers` is now the canonical way to generate integer random numbers from a discrete uniform distribution. The ``rand`` and ``randn`` methods are only available through the legacy `~.RandomState`. This replaces both ``randint`` and the deprecated ``random_integers``. * The Box-Muller method used to produce NumPy's normals is no longer available. * All bit generators can produce doubles, uint64s and uint32s via CTypes (`~PCG64.ctypes`) and CFFI (`~PCG64.cffi`). This allows these bit generators to be used in numba. * The bit generators can be used in downstream projects via Cython. * Optional ``dtype`` argument that accepts ``np.float32`` or ``np.float64`` to produce either single or double precision uniform random variables for select distributions * Uniforms (`~.Generator.random` and `~.Generator.integers`) * Normals (`~.Generator.standard_normal`) * Standard Gammas (`~.Generator.standard_gamma`) * Standard Exponentials (`~.Generator.standard_exponential`) .. ipython:: python rng = Generator(PCG64(0)) rng.random(3, dtype='d') rng.random(3, dtype='f') * Optional ``out`` argument that allows existing arrays to be filled for select distributions * Uniforms (`~.Generator.random`) * Normals (`~.Generator.standard_normal`) * Standard Gammas (`~.Generator.standard_gamma`) * Standard Exponentials (`~.Generator.standard_exponential`) This allows multithreading to fill large arrays in chunks using suitable BitGenerators in parallel. .. ipython:: python existing = np.zeros(4) rng.random(out=existing[:2]) print(existing) * Optional ``axis`` argument for methods like `~.Generator.choice`, `~.Generator.permutation` and `~.Generator.shuffle` that controls which axis an operation is performed over for multi-dimensional arrays. .. ipython:: python rng = Generator(PCG64(123456789)) a = np.arange(12).reshape((3, 4)) a rng.choice(a, axis=1, size=5) rng.shuffle(a, axis=1) # Shuffle in-place a