from __future__ import annotations from ._array_object import Array from typing import Optional, Tuple, Union import numpy as np def max(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: return Array._new(np.max(x._array, axis=axis, keepdims=keepdims)) def mean(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: return Array._new(np.mean(x._array, axis=axis, keepdims=keepdims)) def min(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: return Array._new(np.min(x._array, axis=axis, keepdims=keepdims)) def prod(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: return Array._new(np.prod(x._array, axis=axis, keepdims=keepdims)) def std(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array: # Note: the keyword argument correction is different here return Array._new(np.std(x._array, axis=axis, ddof=correction, keepdims=keepdims)) def sum(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> Array: return Array._new(np.sum(x._array, axis=axis, keepdims=keepdims)) def var(x: Array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, correction: Union[int, float] = 0.0, keepdims: bool = False) -> Array: # Note: the keyword argument correction is different here return Array._new(np.var(x._array, axis=axis, ddof=correction, keepdims=keepdims))