__all__ = ['matrix', 'bmat', 'mat', 'asmatrix'] import numeric as N from numeric import ArrayType, concatenate, integer, multiply, power, \ isscalar, binary_repr import types import string as str_ import sys # make translation table _table = [None]*256 for k in range(256): _table[k] = chr(k) _table = ''.join(_table) _numchars = str_.digits + ".-+jeEL" del str_ _todelete = [] for k in _table: if k not in _numchars: _todelete.append(k) _todelete = ''.join(_todelete) del k def _eval(astr): return eval(astr.translate(_table,_todelete)) def _convert_from_string(data): rows = data.split(';') newdata = [] count = 0 for row in rows: trow = row.split(',') newrow = [] for col in trow: temp = col.split() newrow.extend(map(_eval,temp)) if count == 0: Ncols = len(newrow) elif len(newrow) != Ncols: raise ValueError, "Rows not the same size." count += 1 newdata.append(newrow) return newdata def asmatrix(data, dtype=None): """ Returns 'data' as a matrix. Unlike matrix(), no copy is performed if 'data' is already a matrix or array. Equivalent to: matrix(data, copy=False) """ return matrix(data, dtype=dtype, copy=False) class matrix(N.ndarray): __array_priority__ = 10.0 def __new__(subtype, data, dtype=None, copy=True): if isinstance(data, matrix): dtype2 = data.dtype if (dtype is None): dtype = dtype2 if (dtype2 is dtype) and (not copy): return data return data.astype(dtype) if isinstance(data, N.ndarray): if dtype is None: intype = data.dtypedescr else: intype = N.dtypedescr(dtype) new = data.view(matrix) if intype != data.dtypedescr: return new.astype(intype) if copy: return new.copy() else: return new if isinstance(data, types.StringType): data = _convert_from_string(data) # now convert data to an array arr = N.array(data, dtype=dtype, copy=copy) ndim = arr.ndim shape = arr.shape if (ndim > 2): raise ValueError, "matrix must be 2-dimensional" elif ndim == 0: shape = (1,1) elif ndim == 1: shape = (1,shape[0]) fortran = False if (ndim == 2) and arr.flags.fortran: fortran = True if not (fortran or arr.flags.contiguous): arr = arr.copy() ret = N.ndarray.__new__(subtype, shape, arr.dtypedescr, buffer=arr, fortran=fortran) return ret def __array_finalize__(self, obj): ndim = self.ndim if ndim == 0: self.shape = (1,1) elif ndim == 1: self.shape = (1,self.shape[0]) return def __getitem__(self, index): out = N.ndarray.__getitem__(self, index) # Need to swap if slice is on first index retscal = False try: n = len(index) if (n==2): if isinstance(index[0], types.SliceType): if (isscalar(index[1])): sh = out.shape out.shape = (sh[1], sh[0]) else: if (isscalar(index[0])) and (isscalar(index[1])): retscal = True except TypeError: pass if retscal and out.shape == (1,1): # convert scalars return out.A[0,0] return out def __mul__(self, other): if isinstance(other, N.ndarray) and other.ndim == 0: return N.multiply(self, other) else: return N.dot(self, other) def __rmul__(self, other): if isinstance(other, N.ndarray) and other.ndim == 0: return N.multiply(other, self) else: return N.dot(other, self) def __imul__(self, other): self[:] = self * other return self def __pow__(self, other): shape = self.shape if len(shape) != 2 or shape[0] != shape[1]: raise TypeError, "matrix is not square" if type(other) in (type(1), type(1L)): if other==0: return matrix(N.identity(shape[0])) if other<0: x = self.I other=-other else: x=self result = x if other <= 3: while(other>1): result=result*x other=other-1 return result # binary decomposition to reduce the number of Matrix # Multiplies for other > 3. beta = binary_repr(other) t = len(beta) Z,q = x.copy(),0 while beta[t-q-1] == '0': Z *= Z q += 1 result = Z.copy() for k in range(q+1,t): Z *= Z if beta[t-k-1] == '1': result *= Z return result else: raise TypeError, "exponent must be an integer" def __rpow__(self, other): raise NotImplementedError def __repr__(self): return repr(self.__array__()).replace('array','matrix') def __str__(self): return str(self.__array__()) # Needed becase tolist method expects a[i] # to have dimension a.ndim-1 def tolist(self): return self.__array__().tolist() def getA(self): return self.__array__() def getT(self): return self.transpose() def getH(self): if issubclass(self.dtype, N.complexfloating): return self.transpose().conjugate() else: return self.transpose() def getI(self): from numpy.dual import inv return matrix(inv(self)) A = property(getA, None, doc="base array") T = property(getT, None, doc="transpose") H = property(getH, None, doc="hermitian (conjugate) transpose") I = property(getI, None, doc="inverse") def _from_string(str,gdict,ldict): rows = str.split(';') rowtup = [] for row in rows: trow = row.split(',') newrow = [] for x in trow: newrow.extend(x.split()) trow = newrow coltup = [] for col in trow: col = col.strip() try: thismat = ldict[col] except KeyError: try: thismat = gdict[col] except KeyError: raise KeyError, "%s not found" % (col,) coltup.append(thismat) rowtup.append(concatenate(coltup,axis=-1)) return concatenate(rowtup,axis=0) def bmat(obj,ldict=None, gdict=None): """Build a matrix object from string, nested sequence, or array. Ex: F = bmat('A, B; C, D') F = bmat([[A,B],[C,D]]) F = bmat(r_[c_[A,B],c_[C,D]]) all produce the same Matrix Object [ A B ] [ C D ] if A, B, C, and D are appropriately shaped 2-d arrays. """ if isinstance(obj, types.StringType): if gdict is None: # get previous frame frame = sys._getframe().f_back glob_dict = frame.f_globals loc_dict = frame.f_locals else: glob_dict = gdict loc_dict = ldict return matrix(_from_string(obj, glob_dict, loc_dict)) if isinstance(obj, (types.TupleType, types.ListType)): # [[A,B],[C,D]] arr_rows = [] for row in obj: if isinstance(row, ArrayType): # not 2-d return matrix(concatenate(obj,axis=-1)) else: arr_rows.append(concatenate(row,axis=-1)) return matrix(concatenate(arr_rows,axis=0)) if isinstance(obj, ArrayType): return matrix(obj) mat = matrix