# Module containing non-deprecated functions borrowed from Numeric. # functions that are now methods __all__ = ['take', 'reshape', 'choose', 'repeat', 'put', 'swapaxes', 'transpose', 'sort', 'argsort', 'argmax', 'argmin', 'searchsorted', 'alen', 'resize', 'diagonal', 'trace', 'ravel', 'nonzero', 'shape', 'compress', 'clip', 'sum', 'product', 'prod', 'sometrue', 'alltrue', 'any', 'all', 'cumsum', 'cumproduct', 'cumprod', 'ptp', 'ndim', 'rank', 'size', 'around', 'round_', 'mean', 'std', 'var', 'squeeze', 'amax', 'amin', ] import multiarray as mu import umath as um import numerictypes as nt from numeric import asarray, array, asanyarray, concatenate _dt_ = nt.sctype2char import types try: _gentype = types.GeneratorType except AttributeError: _gentype = types.NoneType # save away Python sum _sum_ = sum # functions that are now methods def _wrapit(obj, method, *args, **kwds): try: wrap = obj.__array_wrap__ except AttributeError: wrap = None result = getattr(asarray(obj),method)(*args, **kwds) if wrap and isinstance(result, mu.ndarray): if not isinstance(result, mu.ndarray): result = asarray(result) result = wrap(result) return result def take(a, indices, axis=None, out=None, mode='raise'): """Return an array with values pulled from the given array at the given indices. This function does the same thing as "fancy" indexing; however, it can be easier to use if you need to specify a given axis. :Parameters: - `a` : array The source array - `indices` : int array The indices of the values to extract. - `axis` : None or int, optional (default=None) The axis over which to select values. None signifies that the operation should be performed over the flattened array. - `out` : array, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. - `mode` : one of 'raise', 'wrap', or 'clip', optional (default='raise') Specifies how out-of-bounds indices will behave. - 'raise' : raise an error - 'wrap' : wrap around - 'clip' : clip to the range :Returns: - `subarray` : array :See also: numpy.ndarray.take() is the equivalent method. """ try: take = a.take except AttributeError: return _wrapit(a, 'take', indices, axis, out, mode) return take(indices, axis, out, mode) # not deprecated --- copy if necessary, view otherwise def reshape(a, newshape, order='C'): """Return an array that uses the data of the given array, but with a new shape. :Parameters: - `a` : array - `newshape` : shape tuple or int The new shape should be compatible with the original shape. If an integer, then the result will be a 1D array of that length. - `order` : 'C' or 'FORTRAN', optional (default='C') Whether the array data should be viewed as in C (row-major) order or FORTRAN (column-major) order. :Returns: - `reshaped_array` : array This will be a new view object if possible; otherwise, it will return a copy. :See also: numpy.ndarray.reshape() is the equivalent method. """ try: reshape = a.reshape except AttributeError: return _wrapit(a, 'reshape', newshape, order=order) return reshape(newshape, order=order) def choose(a, choices, out=None, mode='raise'): """Use an index array to construct a new array from a set of choices. Given an array of integers in {0, 1, ..., n-1} and a set of n choice arrays, this function will create a new array that merges each of the choice arrays. Where a value in `a` is i, then the new array will have the value that choices[i] contains in the same place. :Parameters: - `a` : int array This array must contain integers in [0, n-1], where n is the number of choices. - `choices` : sequence of arrays Each of the choice arrays should have the same shape as the index array. - `out` : array, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype - `mode` : one of 'raise', 'wrap', or 'clip', optional (default='raise') Specifies how out-of-bounds indices will behave. - 'raise' : raise an error - 'wrap' : wrap around - 'clip' : clip to the range :Returns: - `merged_array` : array :See also: numpy.ndarray.choose() is the equivalent method. :Example: >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], ... [20, 21, 22, 23], [30, 31, 32, 33]] >>> choose([2, 3, 1, 0], choices) array([20, 31, 12, 3]) >>> choose([2, 4, 1, 0], choices, mode='clip') array([20, 31, 12, 3]) >>> choose([2, 4, 1, 0], choices, mode='wrap') array([20, 1, 12, 3]) """ try: choose = a.choose except AttributeError: return _wrapit(a, 'choose', choices, out=out, mode=mode) return choose(choices, out=out, mode=mode) def repeat(a, repeats, axis=None): """Repeat elements of an array. :Parameters: - `a` : array - `repeats` : int or int array The number of repetitions for each element. If a plain integer, then it is applied to all elements. If an array, it needs to be of the same length as the chosen axis. - `axis` : None or int, optional (default=None) The axis along which to repeat values. If None, then this function will operated on the flattened array `a` and return a similarly flat result. :Returns: - `repeated_array` : array :See also: numpy.ndarray.repeat() is the equivalent method. :Example: >>> repeat([0, 1, 2], 2) array([0, 0, 1, 1, 2, 2]) >>> repeat([0, 1, 2], [2, 3, 4]) array([0, 0, 1, 1, 1, 2, 2, 2, 2]) """ try: repeat = a.repeat except AttributeError: return _wrapit(a, 'repeat', repeats, axis) return repeat(repeats, axis) def put (a, ind, v, mode='raise'): """put(a, ind, v) results in a[n] = v[n] for all n in ind If v is shorter than mask it will be repeated as necessary. In particular v can be a scalar or length 1 array. The routine put is the equivalent of the following (although the loop is in C for speed): ind = array(indices, copy=False) v = array(values, copy=False).astype(a.dtype) for i in ind: a.flat[i] = v[i] a must be a contiguous numpy array. """ return a.put(ind, v, mode) def swapaxes(a, axis1, axis2): """swapaxes(a, axis1, axis2) returns array a with axis1 and axis2 interchanged. """ try: swapaxes = a.swapaxes except AttributeError: return _wrapit(a, 'swapaxes', axis1, axis2) return swapaxes(axis1, axis2) def transpose(a, axes=None): """transpose(a, axes=None) returns a view of the array with dimensions permuted according to axes. If axes is None (default) returns array with dimensions reversed. """ try: transpose = a.transpose except AttributeError: return _wrapit(a, 'transpose', axes) return transpose(axes) def sort(a, axis=-1, kind='quicksort', order=None): """Returns copy of 'a' sorted along the given axis. Keyword arguments: axis -- axis to be sorted (default -1). Can be None to indicate that a flattened and sorted array should be returned (the array method does not support this). kind -- sorting algorithm (default 'quicksort') Possible values: 'quicksort', 'mergesort', or 'heapsort'. order -- For an array with fields defined, this argument allows specification of which fields to compare first, second, etc. Not all fields need be specified. Returns: None. This method sorts 'a' in place along the given axis using the algorithm specified by the kind keyword. The various sorts may characterized by average speed, worst case performance, need for work space, and whether they are stable. A stable sort keeps items with the same key in the same relative order and is most useful when used with argsort where the key might differ from the items being sorted. The three available algorithms have the following properties: |------------------------------------------------------| | kind | speed | worst case | work space | stable| |------------------------------------------------------| |'quicksort'| 1 | O(n^2) | 0 | no | |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes | |'heapsort' | 3 | O(n*log(n)) | 0 | no | |------------------------------------------------------| All the sort algorithms make temporary copies of the data when the sort is not along the last axis. Consequently, sorts along the last axis are faster and use less space than sorts along other axis. """ if axis is None: a = asanyarray(a).flatten() axis = 0 else: a = asanyarray(a).copy() a.sort(axis, kind, order) return a def argsort(a, axis=-1, kind='quicksort', order=None): """Returns array of indices that index 'a' in sorted order. Keyword arguments: axis -- axis to be indirectly sorted (default -1) Can be None to indicate return indices into the flattened array. kind -- sorting algorithm (default 'quicksort') Possible values: 'quicksort', 'mergesort', or 'heapsort' order -- For an array with fields defined, this argument allows specification of which fields to compare first, second, etc. Not all fields need be specified. Returns: array of indices that sort 'a' along the specified axis. This method executes an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as 'a' that index data along the given axis in sorted order. The various sorts are characterized by average speed, worst case performance, need for work space, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The three available algorithms have the following properties: |------------------------------------------------------| | kind | speed | worst case | work space | stable| |------------------------------------------------------| |'quicksort'| 1 | O(n^2) | 0 | no | |'mergesort'| 2 | O(n*log(n)) | ~n/2 | yes | |'heapsort' | 3 | O(n*log(n)) | 0 | no | |------------------------------------------------------| All the sort algorithms make temporary copies of the data when the sort is not along the last axis. Consequently, sorts along the last axis are faster and use less space than sorts along other axis. """ try: argsort = a.argsort except AttributeError: return _wrapit(a, 'argsort', axis, kind, order) return argsort(axis, kind, order) def argmax(a, axis=None): """argmax(a,axis=None) returns the indices to the maximum value of the 1-D arrays along the given axis. """ try: argmax = a.argmax except AttributeError: return _wrapit(a, 'argmax', axis) return argmax(axis) def argmin(a, axis=None): """argmin(a,axis=None) returns the indices to the minimum value of the 1-D arrays along the given axis. """ try: argmin = a.argmin except AttributeError: return _wrapit(a, 'argmin', axis) return argmin(axis) def searchsorted(a, v, side='left'): """-> index array. Inserting v[i] before a[index[i]] maintains a in order. Required arguments: a -- sorted 1-D array to be searched. v -- array of keys to be searched for in a. Keyword arguments: side -- {'left', 'right'}, default('left'). Returns: array of indices with the same shape as a. The array to be searched must be 1-D and is assumed to be sorted in ascending order. The function call searchsorted(a, v, side='left') returns an index array with the same shape as v such that for each value i in the index and the corresponding key in v the following holds: a[j] < key <= a[i] for all j < i, If such an index does not exist, a.size() is used. Consequently, i is the index of the first item in 'a' that is >= key. If the key were to be inserted into a in the slot before the index i, then the order of a would be preserved and i would be the smallest index with that property. The function call searchsorted(a, v, side='right') returns an index array with the same shape as v such that for each value i in the index and the corresponding key in v the following holds: a[j] <= key < a[i] for all j < i, If such an index does not exist, a.size() is used. Consequently, i is the index of the first item in 'a' that is > key. If the key were to be inserted into a in the slot before the index i, then the order of a would be preserved and i would be the largest index with that property. """ try: searchsorted = a.searchsorted except AttributeError: return _wrapit(a, 'searchsorted', v, side) return searchsorted(v, side) def resize(a, new_shape): """resize(a,new_shape) returns a new array with the specified shape. The original array's total size can be any size. It fills the new array with repeated copies of a. Note that a.resize(new_shape) will fill array with 0's beyond current definition of a. """ if isinstance(new_shape, (int, nt.integer)): new_shape = (new_shape,) a = ravel(a) Na = len(a) if not Na: return mu.zeros(new_shape, a.dtype.char) total_size = um.multiply.reduce(new_shape) n_copies = int(total_size / Na) extra = total_size % Na if total_size == 0: return a[:0] if extra != 0: n_copies = n_copies+1 extra = Na-extra a = concatenate( (a,)*n_copies) if extra > 0: a = a[:-extra] return reshape(a, new_shape) def squeeze(a): "Returns a with any ones from the shape of a removed" try: squeeze = a.squeeze except AttributeError: return _wrapit(a, 'squeeze') return squeeze() def diagonal(a, offset=0, axis1=0, axis2=1): """diagonal(a, offset=0, axis1=0, axis2=1) returns the given diagonals defined by the last two dimensions of the array. """ return asarray(a).diagonal(offset, axis1, axis2) def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None): """trace(a,offset=0, axis1=0, axis2=1) returns the sum along diagonals (defined by the last two dimenions) of the array. """ return asarray(a).trace(offset, axis1, axis2, dtype, out) def ravel(m,order='C'): """ravel(m) returns a 1d array corresponding to all the elements of it's argument. The new array is a view of m if possible, otherwise it is a copy. """ a = asarray(m) return a.ravel(order) def nonzero(a): """nonzero(a) returns the indices of the elements of a which are not zero """ try: nonzero = a.nonzero except AttributeError: res = _wrapit(a, 'nonzero') else: res = nonzero() return res def shape(a): """shape(a) returns the shape of a (as a function call which also works on nested sequences). """ try: result = a.shape except AttributeError: result = asarray(a).shape return result def compress(condition, m, axis=None, out=None): """compress(condition, x, axis=None) = those elements of x corresponding to those elements of condition that are "true". condition must be the same size as the given dimension of x.""" try: compress = m.compress except AttributeError: return _wrapit(m, 'compress', condition, axis, out) return compress(condition, axis, out) def clip(m, m_min, m_max): """clip(m, m_min, m_max) = every entry in m that is less than m_min is replaced by m_min, and every entry greater than m_max is replaced by m_max. """ try: clip = m.clip except AttributeError: return _wrapit(m, 'clip', m_min, m_max) return clip(m_min, m_max) def sum(x, axis=None, dtype=None, out=None): """Sum the array over the given axis. The optional dtype argument is the data type for intermediate calculations. The default is to upcast (promote) smaller integer types to the platform-dependent Int. For example, on 32-bit platforms: x.dtype default sum() dtype --------------------------------------------------- bool, int8, int16, int32 int32 Examples: >>> N.sum([0.5, 1.5]) 2.0 >>> N.sum([0.5, 1.5], dtype=N.int32) 1 >>> N.sum([[0, 1], [0, 5]]) 6 >>> N.sum([[0, 1], [0, 5]], axis=1) array([1, 5]) """ if isinstance(x, _gentype): res = _sum_(x) if out is not None: out[...] = res return out return res try: sum = x.sum except AttributeError: return _wrapit(x, 'sum', axis, dtype, out) return sum(axis, dtype, out) def product (x, axis=None, dtype=None, out=None): """Product of the array elements over the given axis.""" try: prod = x.prod except AttributeError: return _wrapit(x, 'prod', axis, dtype, out) return prod(axis, dtype, out) def sometrue (x, axis=None, out=None): """Perform a logical_or over the given axis.""" try: any = x.any except AttributeError: return _wrapit(x, 'any', axis, out) return any(axis, out) def alltrue (x, axis=None, out=None): """Perform a logical_and over the given axis.""" try: all = x.all except AttributeError: return _wrapit(x, 'all', axis, out) return all(axis, out) def any(x,axis=None, out=None): """Return true if any elements of x are true: """ try: any = x.any except AttributeError: return _wrapit(x, 'any', axis, out) return any(axis, out) def all(x,axis=None, out=None): """Return true if all elements of x are true: """ try: all = x.all except AttributeError: return _wrapit(x, 'all', axis, out) return all(axis, out) def cumsum (x, axis=None, dtype=None, out=None): """Sum the array over the given axis.""" try: cumsum = x.cumsum except AttributeError: return _wrapit(x, 'cumsum', axis, dtype, out) return cumsum(axis, dtype, out) def cumproduct (x, axis=None, dtype=None, out=None): """Sum the array over the given axis.""" try: cumprod = x.cumprod except AttributeError: return _wrapit(x, 'cumprod', axis, dtype, out) return cumprod(axis, dtype, out) def ptp(a, axis=None, out=None): """Return maximum - minimum along the the given dimension """ try: ptp = a.ptp except AttributeError: return _wrapit(a, 'ptp', axis, out) return ptp(axis, out) def amax(a, axis=None, out=None): """Return the maximum of 'a' along dimension axis. """ try: amax = a.max except AttributeError: return _wrapit(a, 'max', axis, out) return amax(axis, out) def amin(a, axis=None, out=None): """Return the minimum of a along dimension axis. """ try: amin = a.min except AttributeError: return _wrapit(a, 'min', axis, out) return amin(axis, out) def alen(a): """Return the length of a Python object interpreted as an array of at least 1 dimension. """ try: return len(a) except TypeError: return len(array(a,ndmin=1)) def prod(a, axis=None, dtype=None, out=None): """Return the product of the elements along the given axis """ try: prod = a.prod except AttributeError: return _wrapit(a, 'prod', axis, dtype, out) return prod(axis, dtype, out) def cumprod(a, axis=None, dtype=None, out=None): """Return the cumulative product of the elments along the given axis """ try: cumprod = a.cumprod except AttributeError: return _wrapit(a, 'cumprod', axis, dtype, out) return cumprod(axis, dtype, out) def ndim(a): try: return a.ndim except AttributeError: return asarray(a).ndim def rank(a): """Get the rank of sequence a (the number of dimensions, not a matrix rank) The rank of a scalar is zero. """ try: return a.ndim except AttributeError: return asarray(a).ndim def size (a, axis=None): "Get the number of elements in sequence a, or along a certain axis." if axis is None: try: return a.size except AttributeError: return asarray(a).size else: try: return a.shape[axis] except AttributeError: return asarray(a).shape[axis] def round_(a, decimals=0, out=None): """Returns reference to result. Copies a and rounds to 'decimals' places. Keyword arguments: decimals -- number of decimal places to round to (default 0). out -- existing array to use for output (default copy of a). Returns: Reference to out, where None specifies a copy of the original array a. Round to the specified number of decimals. When 'decimals' is negative it specifies the number of positions to the left of the decimal point. The real and imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and 'decimals' is greater than or equal to 0. The keyword 'out' may be used to specify a different array to hold the result rather than the default 'a'. If the type of the array specified by 'out' differs from that of 'a', the result is cast to the new type, otherwise the original type is kept. Floats round to floats by default. Numpy rounds to even. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. Results may also be surprising due to the inexact representation of decimal fractions in IEEE floating point and the errors introduced in scaling the numbers when 'decimals' is something other than 0. The function around is an alias for round_. """ try: round = a.round except AttributeError: return _wrapit(a, 'round', decimals, out) return round(decimals, out) around = round_ def mean(a, axis=None, dtype=None, out=None): """mean(a, axis=None, dtype=None) Return the arithmetic mean. The mean is the sum of the elements divided by the number of elements. See also: average """ try: mean = a.mean except AttributeError: return _wrapit(a, 'mean', axis, dtype, out) return mean(axis, dtype, out) def std(a, axis=None, dtype=None, out=None): """std(sample, axis=None, dtype=None) Return the standard deviation, a measure of the spread of a distribution. The standard deviation is the square root of the average of the squared deviations from the mean, i.e. std = sqrt(mean((x - x.mean())**2)). See also: var """ try: std = a.std except AttributeError: return _wrapit(a, 'std', axis, dtype, out) return std(axis, dtype, out) def var(a, axis=None, dtype=None, out=None): """var(sample, axis=None, dtype=None) Return the variance, a measure of the spread of a distribution. The variance is the average of the squared deviations from the mean, i.e. var = mean((x - x.mean())**2). See also: std """ try: var = a.var except AttributeError: return _wrapit(a, 'var', axis, dtype, out) return var(axis, dtype, out)