""" Create the numpy.core.multiarray namespace for backward compatibility. In v1.16 the multiarray and umath c-extension modules were merged into a single _multiarray_umath extension module. So we replicate the old namespace by importing from the extension module. """ import functools from . import overrides from . import _multiarray_umath import numpy as np from numpy.core._multiarray_umath import * from numpy.core._multiarray_umath import ( _fastCopyAndTranspose, _flagdict, _insert, _reconstruct, _vec_string, _ARRAY_API, _monotonicity ) __all__ = [ '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS', 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS', 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI', 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP', '_fastCopyAndTranspose', '_flagdict', '_insert', '_reconstruct', '_vec_string', '_monotonicity', 'add_docstring', 'arange', 'array', 'bincount', 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast', 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2', 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data', 'digitize', 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype', 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat', 'frombuffer', 'fromfile', 'fromiter', 'fromstring', 'getbuffer', 'inner', 'int_asbuffer', 'interp', 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters', 'newbuffer', 'normalize_axis_index', 'packbits', 'promote_types', 'putmask', 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function', 'set_legacy_print_mode', 'set_numeric_ops', 'set_string_function', 'set_typeDict', 'shares_memory', 'test_interrupt', 'tracemalloc_domain', 'typeinfo', 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros'] array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') def _empty_like_dispatcher(prototype, dtype=None, order=None, subok=None): return (prototype,) @array_function_dispatch(_empty_like_dispatcher) def empty_like(prototype, dtype=None, order='K', subok=True): """Return a new array with the same shape and type as a given array. Parameters ---------- prototype : array_like The shape and data-type of `prototype` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. .. versionadded:: 1.6.0 order : {'C', 'F', 'A', or 'K'}, optional Overrides the memory layout of the result. 'C' means C-order, 'F' means F-order, 'A' means 'F' if ``prototype`` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of ``prototype`` as closely as possible. .. versionadded:: 1.6.0 subok : bool, optional. If True, then the newly created array will use the sub-class type of 'a', otherwise it will be a base-class array. Defaults to True. Returns ------- out : ndarray Array of uninitialized (arbitrary) data with the same shape and type as `prototype`. See Also -------- ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. Notes ----- This function does *not* initialize the returned array; to do that use `zeros_like` or `ones_like` instead. It may be marginally faster than the functions that do set the array values. Examples -------- >>> a = ([1,2,3], [4,5,6]) # a is array-like >>> np.empty_like(a) array([[-1073741821, -1073741821, 3], #random [ 0, 0, -1073741821]]) >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) >>> np.empty_like(a) array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000],#random [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) """ return _multiarray_umath.empty_like(prototype, dtype, order, subok) def _concatenate_dispatcher(arrays, axis=None, out=None): for array in arrays: yield array yield out @array_function_dispatch(_concatenate_dispatcher) def concatenate(arrays, axis=0, out=None): """ concatenate((a1, a2, ...), axis=0, out=None) Join a sequence of arrays along an existing axis. Parameters ---------- a1, a2, ... : sequence of array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int, optional The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0. out : ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified. Returns ------- res : ndarray The concatenated array. See Also -------- ma.concatenate : Concatenate function that preserves input masks. array_split : Split an array into multiple sub-arrays of equal or near-equal size. split : Split array into a list of multiple sub-arrays of equal size. hsplit : Split array into multiple sub-arrays horizontally (column wise) vsplit : Split array into multiple sub-arrays vertically (row wise) dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). stack : Stack a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise) vstack : Stack arrays in sequence vertically (row wise) dstack : Stack arrays in sequence depth wise (along third dimension) block : Assemble arrays from blocks. Notes ----- When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are *not* preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]]) >>> np.concatenate((a, b.T), axis=1) array([[1, 2, 5], [3, 4, 6]]) >>> np.concatenate((a, b), axis=None) array([1, 2, 3, 4, 5, 6]) This function will not preserve masking of MaskedArray inputs. >>> a = np.ma.arange(3) >>> a[1] = np.ma.masked >>> b = np.arange(2, 5) >>> a masked_array(data=[0, --, 2], mask=[False, True, False], fill_value=999999) >>> b array([2, 3, 4]) >>> np.concatenate([a, b]) masked_array(data=[0, 1, 2, 2, 3, 4], mask=False, fill_value=999999) >>> np.ma.concatenate([a, b]) masked_array(data=[0, --, 2, 2, 3, 4], mask=[False, True, False, False, False, False], fill_value=999999) """ return _multiarray_umath.concatenate(arrays, axis, out) def _inner_dispatcher(a, b): return (a, b) @array_function_dispatch(_inner_dispatcher) def inner(a, b): """ Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. Parameters ---------- a, b : array_like If `a` and `b` are nonscalar, their last dimensions must match. Returns ------- out : ndarray `out.shape = a.shape[:-1] + b.shape[:-1]` Raises ------ ValueError If the last dimension of `a` and `b` has different size. See Also -------- tensordot : Sum products over arbitrary axes. dot : Generalised matrix product, using second last dimension of `b`. einsum : Einstein summation convention. Notes ----- For vectors (1-D arrays) it computes the ordinary inner-product:: np.inner(a, b) = sum(a[:]*b[:]) More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`:: np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) or explicitly:: np.inner(a, b)[i0,...,ir-1,j0,...,js-1] = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:]) In addition `a` or `b` may be scalars, in which case:: np.inner(a,b) = a*b Examples -------- Ordinary inner product for vectors: >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2 A multidimensional example: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14, 38, 62], [ 86, 110, 134]]) An example where `b` is a scalar: >>> np.inner(np.eye(2), 7) array([[ 7., 0.], [ 0., 7.]]) """ return _multiarray_umath.inner(a, b) def _where_dispatcher(condition, x=None, y=None): return (condition, x, y) @array_function_dispatch(_where_dispatcher) def where(condition, x=np._NoValue, y=np._NoValue): """ where(condition, [x, y]) Return elements chosen from `x` or `y` depending on `condition`. .. note:: When only `condition` is provided, this function is a shorthand for ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be preferred, as it behaves correctly for subclasses. The rest of this documentation covers only the case where all three arguments are provided. Parameters ---------- condition : array_like, bool Where True, yield `x`, otherwise yield `y`. x, y : array_like Values from which to choose. `x`, `y` and `condition` need to be broadcastable to some shape. Returns ------- out : ndarray An array with elements from `x` where `condition` is True, and elements from `y` elsewhere. See Also -------- choose nonzero : The function that is called when x and y are omitted Notes ----- If all the arrays are 1-D, `where` is equivalent to:: [xv if c else yv for c, xv, yv in zip(condition, x, y)] Examples -------- >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.where(a < 5, a, 10*a) array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90]) This can be used on multidimensional arrays too: >>> np.where([[True, False], [True, True]], ... [[1, 2], [3, 4]], ... [[9, 8], [7, 6]]) array([[1, 8], [3, 4]]) The shapes of x, y, and the condition are broadcast together: >>> x, y = np.ogrid[:3, :4] >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast array([[10, 0, 0, 0], [10, 11, 1, 1], [10, 11, 12, 2]]) >>> a = np.array([[0, 1, 2], ... [0, 2, 4], ... [0, 3, 6]]) >>> np.where(a < 4, a, -1) # -1 is broadcast array([[ 0, 1, 2], [ 0, 2, -1], [ 0, 3, -1]]) """ # _multiarray_umath.where only accepts positional arguments args = tuple(a for a in (x, y) if a is not np._NoValue) return _multiarray_umath.where(condition, *args) def _lexsort_dispatcher(keys, axis=None): if isinstance(keys, tuple): return keys else: return (keys,) @array_function_dispatch(_lexsort_dispatcher) def lexsort(keys, axis=-1): """ Perform an indirect stable sort using a sequence of keys. Given multiple sorting keys, which can be interpreted as columns in a spreadsheet, lexsort returns an array of integer indices that describes the sort order by multiple columns. The last key in the sequence is used for the primary sort order, the second-to-last key for the secondary sort order, and so on. The keys argument must be a sequence of objects that can be converted to arrays of the same shape. If a 2D array is provided for the keys argument, it's rows are interpreted as the sorting keys and sorting is according to the last row, second last row etc. Parameters ---------- keys : (k, N) array or tuple containing k (N,)-shaped sequences The `k` different "columns" to be sorted. The last column (or row if `keys` is a 2D array) is the primary sort key. axis : int, optional Axis to be indirectly sorted. By default, sort over the last axis. Returns ------- indices : (N,) ndarray of ints Array of indices that sort the keys along the specified axis. See Also -------- argsort : Indirect sort. ndarray.sort : In-place sort. sort : Return a sorted copy of an array. Examples -------- Sort names: first by surname, then by name. >>> surnames = ('Hertz', 'Galilei', 'Hertz') >>> first_names = ('Heinrich', 'Galileo', 'Gustav') >>> ind = np.lexsort((first_names, surnames)) >>> ind array([1, 2, 0]) >>> [surnames[i] + ", " + first_names[i] for i in ind] ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich'] Sort two columns of numbers: >>> a = [1,5,1,4,3,4,4] # First column >>> b = [9,4,0,4,0,2,1] # Second column >>> ind = np.lexsort((b,a)) # Sort by a, then by b >>> print(ind) [2 0 4 6 5 3 1] >>> [(a[i],b[i]) for i in ind] [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)] Note that sorting is first according to the elements of ``a``. Secondary sorting is according to the elements of ``b``. A normal ``argsort`` would have yielded: >>> [(a[i],b[i]) for i in np.argsort(a)] [(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)] Structured arrays are sorted lexically by ``argsort``: >>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)], ... dtype=np.dtype([('x', int), ('y', int)])) >>> np.argsort(x) # or np.argsort(x, order=('x', 'y')) array([2, 0, 4, 6, 5, 3, 1]) """ return _multiarray_umath.lexsort(keys, axis) def _can_cast_dispatcher(from_, to, casting=None): return (from_,) @array_function_dispatch(_can_cast_dispatcher) def can_cast(from_, to, casting='safe'): """ Returns True if cast between data types can occur according to the casting rule. If from is a scalar or array scalar, also returns True if the scalar value can be cast without overflow or truncation to an integer. Parameters ---------- from_ : dtype, dtype specifier, scalar, or array Data type, scalar, or array to cast from. to : dtype or dtype specifier Data type to cast to. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional Controls what kind of data casting may occur. * 'no' means the data types should not be cast at all. * 'equiv' means only byte-order changes are allowed. * 'safe' means only casts which can preserve values are allowed. * 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. Returns ------- out : bool True if cast can occur according to the casting rule. Notes ----- Starting in NumPy 1.9, can_cast function now returns False in 'safe' casting mode for integer/float dtype and string dtype if the string dtype length is not long enough to store the max integer/float value converted to a string. Previously can_cast in 'safe' mode returned True for integer/float dtype and a string dtype of any length. See also -------- dtype, result_type Examples -------- Basic examples >>> np.can_cast(np.int32, np.int64) True >>> np.can_cast(np.float64, complex) True >>> np.can_cast(complex, float) False >>> np.can_cast('i8', 'f8') True >>> np.can_cast('i8', 'f4') False >>> np.can_cast('i4', 'S4') False Casting scalars >>> np.can_cast(100, 'i1') True >>> np.can_cast(150, 'i1') False >>> np.can_cast(150, 'u1') True >>> np.can_cast(3.5e100, np.float32) False >>> np.can_cast(1000.0, np.float32) True Array scalar checks the value, array does not >>> np.can_cast(np.array(1000.0), np.float32) True >>> np.can_cast(np.array([1000.0]), np.float32) False Using the casting rules >>> np.can_cast('i8', 'i8', 'no') True >>> np.can_cast('i8', 'no') False >>> np.can_cast('i8', 'equiv') True >>> np.can_cast('i8', 'equiv') False >>> np.can_cast('i8', 'safe') True >>> np.can_cast('i4', 'safe') False >>> np.can_cast('i4', 'same_kind') True >>> np.can_cast('u4', 'same_kind') False >>> np.can_cast('u4', 'unsafe') True """ return _multiarray_umath.can_cast(from_, to, casting) def _min_scalar_type_dispatcher(a): return (a,) @array_function_dispatch(_min_scalar_type_dispatcher) def min_scalar_type(a): """ For scalar ``a``, returns the data type with the smallest size and smallest scalar kind which can hold its value. For non-scalar array ``a``, returns the vector's dtype unmodified. Floating point values are not demoted to integers, and complex values are not demoted to floats. Parameters ---------- a : scalar or array_like The value whose minimal data type is to be found. Returns ------- out : dtype The minimal data type. Notes ----- .. versionadded:: 1.6.0 See Also -------- result_type, promote_types, dtype, can_cast Examples -------- >>> np.min_scalar_type(10) dtype('uint8') >>> np.min_scalar_type(-260) dtype('int16') >>> np.min_scalar_type(3.1) dtype('float16') >>> np.min_scalar_type(1e50) dtype('float64') >>> np.min_scalar_type(np.arange(4,dtype='f8')) dtype('float64') """ return _multiarray_umath.min_scalar_type(a) def _result_type_dispatcher(*arrays_and_dtypes): return arrays_and_dtypes @array_function_dispatch(_result_type_dispatcher) def result_type(*arrays_and_dtypes): """ Returns the type that results from applying the NumPy type promotion rules to the arguments. Type promotion in NumPy works similarly to the rules in languages like C++, with some slight differences. When both scalars and arrays are used, the array's type takes precedence and the actual value of the scalar is taken into account. For example, calculating 3*a, where a is an array of 32-bit floats, intuitively should result in a 32-bit float output. If the 3 is a 32-bit integer, the NumPy rules indicate it can't convert losslessly into a 32-bit float, so a 64-bit float should be the result type. By examining the value of the constant, '3', we see that it fits in an 8-bit integer, which can be cast losslessly into the 32-bit float. Parameters ---------- arrays_and_dtypes : list of arrays and dtypes The operands of some operation whose result type is needed. Returns ------- out : dtype The result type. See also -------- dtype, promote_types, min_scalar_type, can_cast Notes ----- .. versionadded:: 1.6.0 The specific algorithm used is as follows. Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex) the maximum kind of all the arrays and the scalars are. If there are only scalars or the maximum category of the scalars is higher than the maximum category of the arrays, the data types are combined with :func:`promote_types` to produce the return value. Otherwise, `min_scalar_type` is called on each array, and the resulting data types are all combined with :func:`promote_types` to produce the return value. The set of int values is not a subset of the uint values for types with the same number of bits, something not reflected in :func:`min_scalar_type`, but handled as a special case in `result_type`. Examples -------- >>> np.result_type(3, np.arange(7, dtype='i1')) dtype('int8') >>> np.result_type('i4', 'c8') dtype('complex128') >>> np.result_type(3.0, -2) dtype('float64') """ return _multiarray_umath.result_type(*arrays_and_dtypes) def _dot_dispatcher(a, b, out=None): return (a, b, out) @array_function_dispatch(_dot_dispatcher) def dot(a, b, out=None): """ Dot product of two arrays. Specifically, - If both `a` and `b` are 1-D arrays, it is inner product of vectors (without complex conjugation). - If both `a` and `b` are 2-D arrays, it is matrix multiplication, but using :func:`matmul` or ``a @ b`` is preferred. - If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is preferred. - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over the last axis of `a` and `b`. - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a sum product over the last axis of `a` and the second-to-last axis of `b`:: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) Parameters ---------- a : array_like First argument. b : array_like Second argument. out : ndarray, optional Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for `dot(a,b)`. This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible. Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. If `out` is given, then it is returned. Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. matmul : '@' operator as method with out parameter. Examples -------- >>> np.dot(3, 4) 12 Neither argument is complex-conjugated: >>> np.dot([2j, 3j], [2j, 3j]) (-13+0j) For 2-D arrays it is the matrix product: >>> a = [[1, 0], [0, 1]] >>> b = [[4, 1], [2, 2]] >>> np.dot(a, b) array([[4, 1], [2, 2]]) >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) >>> np.dot(a, b)[2,3,2,1,2,2] 499128 >>> sum(a[2,3,2,:] * b[1,2,:,2]) 499128 """ return _multiarray_umath.dot(a, b, out) def _vdot_dispatcher(a, b): return (a, b) @array_function_dispatch(_vdot_dispatcher) def vdot(a, b): """ Return the dot product of two vectors. The vdot(`a`, `b`) function handles complex numbers differently than dot(`a`, `b`). If the first argument is complex the complex conjugate of the first argument is used for the calculation of the dot product. Note that `vdot` handles multidimensional arrays differently than `dot`: it does *not* perform a matrix product, but flattens input arguments to 1-D vectors first. Consequently, it should only be used for vectors. Parameters ---------- a : array_like If `a` is complex the complex conjugate is taken before calculation of the dot product. b : array_like Second argument to the dot product. Returns ------- output : ndarray Dot product of `a` and `b`. Can be an int, float, or complex depending on the types of `a` and `b`. See Also -------- dot : Return the dot product without using the complex conjugate of the first argument. Examples -------- >>> a = np.array([1+2j,3+4j]) >>> b = np.array([5+6j,7+8j]) >>> np.vdot(a, b) (70-8j) >>> np.vdot(b, a) (70+8j) Note that higher-dimensional arrays are flattened! >>> a = np.array([[1, 4], [5, 6]]) >>> b = np.array([[4, 1], [2, 2]]) >>> np.vdot(a, b) 30 >>> np.vdot(b, a) 30 >>> 1*4 + 4*1 + 5*2 + 6*2 30 """ return _multiarray_umath.vdot(a, b) def _is_busday_dispatcher( dates, weekmask=None, holidays=None, busdaycal=None, out=None): return (dates, weekmask, holidays, out) @array_function_dispatch(_is_busday_dispatcher) def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None): """ is_busday(dates, weekmask='1111100', holidays=None, busdaycal=None, out=None) Calculates which of the given dates are valid days, and which are not. .. versionadded:: 1.7.0 Parameters ---------- dates : array_like of datetime64[D] The array of dates to process. weekmask : str or array_like of bool, optional A seven-element array indicating which of Monday through Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for weekdays, optionally separated by white space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun holidays : array_like of datetime64[D], optional An array of dates to consider as invalid dates. They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited for fast calculations of valid days. busdaycal : busdaycalendar, optional A `busdaycalendar` object which specifies the valid days. If this parameter is provided, neither weekmask nor holidays may be provided. out : array of bool, optional If provided, this array is filled with the result. Returns ------- out : array of bool An array with the same shape as ``dates``, containing True for each valid day, and False for each invalid day. See Also -------- busdaycalendar: An object that specifies a custom set of valid days. busday_offset : Applies an offset counted in valid days. busday_count : Counts how many valid days are in a half-open date range. Examples -------- >>> # The weekdays are Friday, Saturday, and Monday ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'], ... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) array([False, False, True], dtype='bool') """ kwargs = {} if weekmask is not None: kwargs['weekmask'] = weekmask if holidays is not None: kwargs['holidays'] = holidays if busdaycal is not None: kwargs['busdaycal'] = busdaycal if out is not None: kwargs['out'] = out return _multiarray_umath.is_busday(dates, **kwargs) def _busday_offset_dispatcher(dates, offsets, roll=None, weekmask=None, holidays=None, busdaycal=None, out=None): return (dates, offsets, weekmask, holidays, out) @array_function_dispatch(_busday_offset_dispatcher) def busday_offset(dates, offsets, roll='raise', weekmask=None, holidays=None, busdaycal=None, out=None): """ busday_offset(dates, offsets, roll='raise', weekmask='1111100', holidays=None, busdaycal=None, out=None) First adjusts the date to fall on a valid day according to the ``roll`` rule, then applies offsets to the given dates counted in valid days. .. versionadded:: 1.7.0 Parameters ---------- dates : array_like of datetime64[D] The array of dates to process. offsets : array_like of int The array of offsets, which is broadcast with ``dates``. roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', 'modifiedfollowing', 'modifiedpreceding'}, optional How to treat dates that do not fall on a valid day. The default is 'raise'. * 'raise' means to raise an exception for an invalid day. * 'nat' means to return a NaT (not-a-time) for an invalid day. * 'forward' and 'following' mean to take the first valid day later in time. * 'backward' and 'preceding' mean to take the first valid day earlier in time. * 'modifiedfollowing' means to take the first valid day later in time unless it is across a Month boundary, in which case to take the first valid day earlier in time. * 'modifiedpreceding' means to take the first valid day earlier in time unless it is across a Month boundary, in which case to take the first valid day later in time. weekmask : str or array_like of bool, optional A seven-element array indicating which of Monday through Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for weekdays, optionally separated by white space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun holidays : array_like of datetime64[D], optional An array of dates to consider as invalid dates. They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited for fast calculations of valid days. busdaycal : busdaycalendar, optional A `busdaycalendar` object which specifies the valid days. If this parameter is provided, neither weekmask nor holidays may be provided. out : array of datetime64[D], optional If provided, this array is filled with the result. Returns ------- out : array of datetime64[D] An array with a shape from broadcasting ``dates`` and ``offsets`` together, containing the dates with offsets applied. See Also -------- busdaycalendar: An object that specifies a custom set of valid days. is_busday : Returns a boolean array indicating valid days. busday_count : Counts how many valid days are in a half-open date range. Examples -------- >>> # First business day in October 2011 (not accounting for holidays) ... np.busday_offset('2011-10', 0, roll='forward') numpy.datetime64('2011-10-03','D') >>> # Last business day in February 2012 (not accounting for holidays) ... np.busday_offset('2012-03', -1, roll='forward') numpy.datetime64('2012-02-29','D') >>> # Third Wednesday in January 2011 ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed') numpy.datetime64('2011-01-19','D') >>> # 2012 Mother's Day in Canada and the U.S. ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun') numpy.datetime64('2012-05-13','D') >>> # First business day on or after a date ... np.busday_offset('2011-03-20', 0, roll='forward') numpy.datetime64('2011-03-21','D') >>> np.busday_offset('2011-03-22', 0, roll='forward') numpy.datetime64('2011-03-22','D') >>> # First business day after a date ... np.busday_offset('2011-03-20', 1, roll='backward') numpy.datetime64('2011-03-21','D') >>> np.busday_offset('2011-03-22', 1, roll='backward') numpy.datetime64('2011-03-23','D') """ kwargs = {} if weekmask is not None: kwargs['weekmask'] = weekmask if holidays is not None: kwargs['holidays'] = holidays if busdaycal is not None: kwargs['busdaycal'] = busdaycal if out is not None: kwargs['out'] = out return _multiarray_umath.busday_offset(dates, offsets, roll, **kwargs) def _busday_count_dispatcher(begindates, enddates, weekmask=None, holidays=None, busdaycal=None, out=None): return (begindates, enddates, weekmask, holidays, out) @array_function_dispatch(_busday_count_dispatcher) def busday_count(begindates, enddates, weekmask=None, holidays=None, busdaycal=None, out=None): """ busday_count(begindates, enddates, weekmask='1111100', holidays=[], busdaycal=None, out=None) Counts the number of valid days between `begindates` and `enddates`, not including the day of `enddates`. If ``enddates`` specifies a date value that is earlier than the corresponding ``begindates`` date value, the count will be negative. .. versionadded:: 1.7.0 Parameters ---------- begindates : array_like of datetime64[D] The array of the first dates for counting. enddates : array_like of datetime64[D] The array of the end dates for counting, which are excluded from the count themselves. weekmask : str or array_like of bool, optional A seven-element array indicating which of Monday through Sunday are valid days. May be specified as a length-seven list or array, like [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for weekdays, optionally separated by white space. Valid abbreviations are: Mon Tue Wed Thu Fri Sat Sun holidays : array_like of datetime64[D], optional An array of dates to consider as invalid dates. They may be specified in any order, and NaT (not-a-time) dates are ignored. This list is saved in a normalized form that is suited for fast calculations of valid days. busdaycal : busdaycalendar, optional A `busdaycalendar` object which specifies the valid days. If this parameter is provided, neither weekmask nor holidays may be provided. out : array of int, optional If provided, this array is filled with the result. Returns ------- out : array of int An array with a shape from broadcasting ``begindates`` and ``enddates`` together, containing the number of valid days between the begin and end dates. See Also -------- busdaycalendar: An object that specifies a custom set of valid days. is_busday : Returns a boolean array indicating valid days. busday_offset : Applies an offset counted in valid days. Examples -------- >>> # Number of weekdays in January 2011 ... np.busday_count('2011-01', '2011-02') 21 >>> # Number of weekdays in 2011 ... np.busday_count('2011', '2012') 260 >>> # Number of Saturdays in 2011 ... np.busday_count('2011', '2012', weekmask='Sat') 53 """ kwargs = {} if weekmask is not None: kwargs['weekmask'] = weekmask if holidays is not None: kwargs['holidays'] = holidays if busdaycal is not None: kwargs['busdaycal'] = busdaycal if out is not None: kwargs['out'] = out return _multiarray_umath.busday_count(begindates, enddates, **kwargs) def _datetime_as_string_dispatcher( arr, unit=None, timezone=None, casting=None): return (arr,) @array_function_dispatch(_datetime_as_string_dispatcher) def datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind'): """ Convert an array of datetimes into an array of strings. Parameters ---------- arr : array_like of datetime64 The array of UTC timestamps to format. unit : str One of None, 'auto', or a :ref:`datetime unit `. timezone : {'naive', 'UTC', 'local'} or tzinfo Timezone information to use when displaying the datetime. If 'UTC', end with a Z to indicate UTC time. If 'local', convert to the local timezone first, and suffix with a +-#### timezone offset. If a tzinfo object, then do as with 'local', but use the specified timezone. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'} Casting to allow when changing between datetime units. Returns ------- str_arr : ndarray An array of strings the same shape as `arr`. Examples -------- >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]') >>> d array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30', '2002-10-27T07:30'], dtype='datetime64[m]') Setting the timezone to UTC shows the same information, but with a Z suffix >>> np.datetime_as_string(d, timezone='UTC') array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z', '2002-10-27T07:30Z'], dtype='>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern')) array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400', '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='>> np.datetime_as_string(d, unit='h') array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'], dtype='>> np.datetime_as_string(d, unit='s') array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00', '2002-10-27T07:30:00'], dtype='>> np.datetime_as_string(d, unit='h', casting='safe') TypeError: Cannot create a datetime string as units 'h' from a NumPy datetime with units 'm' according to the rule 'safe' """ return _multiarray_umath.datetime_as_string(arr, unit, timezone, casting)