__all__ = ['newaxis', 'ndarray', 'flatiter', 'ufunc', 'arange', 'array', 'zeros', 'empty', 'broadcast', 'dtype', 'fromstring', 'fromfile', 'frombuffer','newbuffer', 'getbuffer', 'where', 'argwhere', 'concatenate', 'fastCopyAndTranspose', 'lexsort', 'set_numeric_ops', 'can_cast', 'asarray', 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'isfortran', 'empty_like', 'zeros_like', 'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'alterdot', 'restoredot', 'cross', 'array2string', 'get_printoptions', 'set_printoptions', 'array_repr', 'array_str', 'set_string_function', 'little_endian', 'require', 'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction', 'load', 'loads', 'isscalar', 'binary_repr', 'base_repr', 'ones', 'identity', 'allclose', 'compare_chararrays', 'seterr', 'geterr', 'setbufsize', 'getbufsize', 'seterrcall', 'geterrcall', 'flatnonzero', 'Inf', 'inf', 'infty', 'Infinity', 'nan', 'NaN', 'False_', 'True_', 'bitwise_not', 'CLIP', 'RAISE', 'WRAP', 'MAXDIMS', 'BUFSIZE', 'ALLOW_THREADS'] import sys import multiarray import umath from umath import * import numerictypes from numerictypes import * bitwise_not = invert CLIP = multiarray.CLIP WRAP = multiarray.WRAP RAISE = multiarray.RAISE MAXDIMS = multiarray.MAXDIMS ALLOW_THREADS = multiarray.ALLOW_THREADS BUFSIZE = multiarray.BUFSIZE # from Fernando Perez's IPython def zeros_like(a): """Return an array of zeros of the shape and typecode of a. If you don't explicitly need the array to be zeroed, you should instead use empty_like(), which is faster as it only allocates memory.""" try: return zeros(a.shape, a.dtype, a.flags.fnc) except AttributeError: try: wrap = a.__array_wrap__ except AttributeError: wrap = None a = asarray(a) res = zeros(a.shape, a.dtype) if wrap: res = wrap(res) return res def empty_like(a): """Return an empty (uninitialized) array of the shape and typecode of a. Note that this does NOT initialize the returned array. If you require your array to be initialized, you should use zeros_like(). """ try: return empty(a.shape, a.dtype, a.flags.fnc) except AttributeError: try: wrap = a.__array_wrap__ except AttributeError: wrap = None a = asarray(a) res = empty(a.shape, a.dtype) if wrap: res = wrap(res) return res # end Fernando's utilities def extend_all(module): adict = {} for a in __all__: adict[a] = 1 try: mall = getattr(module, '__all__') except AttributeError: mall = [k for k in module.__dict__.keys() if not k.startswith('_')] for a in mall: if a not in adict: __all__.append(a) extend_all(umath) extend_all(numerictypes) abs = absolute newaxis = None ndarray = multiarray.ndarray flatiter = multiarray.flatiter broadcast = multiarray.broadcast dtype = multiarray.dtype ufunc = type(sin) arange = multiarray.arange array = multiarray.array zeros = multiarray.zeros empty = multiarray.empty fromstring = multiarray.fromstring fromiter = multiarray.fromiter fromfile = multiarray.fromfile frombuffer = multiarray.frombuffer newbuffer = multiarray.newbuffer getbuffer = multiarray.getbuffer where = multiarray.where concatenate = multiarray.concatenate fastCopyAndTranspose = multiarray._fastCopyAndTranspose set_numeric_ops = multiarray.set_numeric_ops can_cast = multiarray.can_cast lexsort = multiarray.lexsort compare_chararrays = multiarray.compare_chararrays def asarray(a, dtype=None, order=None): """Returns a as an array. Unlike array(), no copy is performed if a is already an array. Subclasses are converted to base class ndarray. """ return array(a, dtype, copy=False, order=order) def asanyarray(a, dtype=None, order=None): """Returns a as an array, but will pass subclasses through. """ return array(a, dtype, copy=False, order=order, subok=1) def ascontiguousarray(a, dtype=None): """Return 'a' as an array contiguous in memory (C order). """ return array(a, dtype, copy=False, order='C', ndmin=1) def asfortranarray(a, dtype=None): """Return 'a' as an array laid out in Fortran-order in memory. """ return array(a, dtype, copy=False, order='F', ndmin=1) def require(a, dtype=None, requirements=None): if requirements is None: requirements = [] else: requirements = [x.upper() for x in requirements] if not requirements: return asanyarray(a, dtype=dtype) if 'ENSUREARRAY' in requirements or 'E' in requirements: func = asarray else: func = asanyarray if 'FORCECAST' in requirements or 'FORCE' in requirements: arr = func(a) if dtype is not None and arr.dtype != dtype: arr = arr.astype(dtype) else: arr = func(a, dtype=dtype) copychar = 'A' if 'FORTRAN' in requirements or 'F' in requirements: copychar = 'F' elif 'CONTIGUOUS' in requirements or 'C' in requirements: copychar = 'C' for prop in requirements: if not arr.flags[prop]: arr = arr.copy(copychar) break return arr def isfortran(a): """Returns True if 'a' is laid out in Fortran-order in memory. """ return a.flags.fnc def argwhere(a): """Return a 2-d array of shape N x a.ndim where each row is a sequence of indices into a. This sequence must be converted to a tuple in order to be used to index into a. """ return transpose(a.nonzero()) def flatnonzero(a): """Return indicies that are not-zero in flattened version of a Equivalent to a.ravel().nonzero()[0] """ return a.ravel().nonzero()[0] _mode_from_name_dict = {'v': 0, 's' : 1, 'f' : 2} def _mode_from_name(mode): if isinstance(mode, type("")): return _mode_from_name_dict[mode.lower()[0]] return mode def correlate(a,v,mode='valid'): mode = _mode_from_name(mode) return multiarray.correlate(a,v,mode) def convolve(a,v,mode='full'): """Returns the discrete, linear convolution of 1-D sequences a and v; mode can be 0 (valid), 1 (same), or 2 (full) to specify size of the resulting sequence. """ if (len(v) > len(a)): a, v = v, a mode = _mode_from_name(mode) return multiarray.correlate(a,asarray(v)[::-1],mode) inner = multiarray.inner dot = multiarray.dot def outer(a,b): """outer(a,b) returns the outer product of two vectors. result(i,j) = a(i)*b(j) when a and b are vectors Will accept any arguments that can be made into vectors. """ a = asarray(a) b = asarray(b) return a.ravel()[:,newaxis]*b.ravel()[newaxis,:] def vdot(a, b): """Returns the dot product of 2 vectors (or anything that can be made into a vector). NB: this is not the same as `dot`, as it takes the conjugate of its first argument if complex and always returns a scalar.""" return dot(asarray(a).ravel().conj(), asarray(b).ravel()) # try to import blas optimized dot if available try: # importing this changes the dot function for basic 4 types # to blas-optimized versions. from _dotblas import dot, vdot, inner, alterdot, restoredot except ImportError: def alterdot(): pass def restoredot(): pass def _move_axis_to_0(a, axis): if axis == 0: return a n = a.ndim if axis < 0: axis += n axes = range(1, axis+1) + [0,] + range(axis+1, n) return a.transpose(axes) def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None): """Return the cross product of two (arrays of) vectors. The cross product is performed over the last axis of a and b by default, and can handle axes with dimensions 2 and 3. For a dimension of 2, the z-component of the equivalent three-dimensional cross product is returned. """ if axis is not None: axisa,axisb,axisc=(axis,)*3 a = _move_axis_to_0(asarray(a), axisa) b = _move_axis_to_0(asarray(b), axisb) msg = "incompatible dimensions for cross product\n"\ "(dimension must be 2 or 3)" if (a.shape[0] not in [2,3]) or (b.shape[0] not in [2,3]): raise ValueError(msg) if a.shape[0] == 2: if (b.shape[0] == 2): cp = a[0]*b[1] - a[1]*b[0] if cp.ndim == 0: return cp else: return cp.swapaxes(0,axisc) else: x = a[1]*b[2] y = -a[0]*b[2] z = a[0]*b[1] - a[1]*b[0] elif a.shape[0] == 3: if (b.shape[0] == 3): x = a[1]*b[2] - a[2]*b[1] y = a[2]*b[0] - a[0]*b[2] z = a[0]*b[1] - a[1]*b[0] else: x = -a[2]*b[1] y = a[2]*b[0] z = a[0]*b[1] - a[1]*b[0] cp = array([x,y,z]) if cp.ndim == 1: return cp else: return cp.swapaxes(0,axisc) #Use numarray's printing function from arrayprint import array2string, get_printoptions, set_printoptions _typelessdata = [int_, float_, complex_] if issubclass(intc, int): _typelessdata.append(intc) if issubclass(longlong, int): _typelessdata.append(longlong) def array_repr(arr, max_line_width=None, precision=None, suppress_small=None): if arr.size > 0 or arr.shape==(0,): lst = array2string(arr, max_line_width, precision, suppress_small, ', ', "array(") else: # show zero-length shape unless it is (0,) lst = "[], shape=%s" % (repr(arr.shape),) typeless = arr.dtype.type in _typelessdata if arr.__class__ is not ndarray: cName= arr.__class__.__name__ else: cName = "array" if typeless and arr.size: return cName + "(%s)" % lst else: typename=arr.dtype.name lf = '' if issubclass(arr.dtype.type, flexible): typename = str(arr.dtype) lf = '\n'+' '*len("array(") return cName + "(%s, %sdtype=%s)" % (lst, lf, typename) def array_str(a, max_line_width=None, precision=None, suppress_small=None): return array2string(a, max_line_width, precision, suppress_small, ' ', "", str) set_string_function = multiarray.set_string_function set_string_function(array_str, 0) set_string_function(array_repr, 1) little_endian = (sys.byteorder == 'little') def indices(dimensions, dtype=int): """indices(dimensions,dtype=int) returns an array representing a grid of indices with row-only, and column-only variation. """ tmp = ones(dimensions, dtype) lst = [] for i in range(len(dimensions)): lst.append( add.accumulate(tmp, i, dtype)-1 ) return array(lst) def fromfunction(function, dimensions, **kwargs): """fromfunction(function, dimensions, dtype=int) returns an array constructed by calling function on a tuple of number grids. The function should accept as many arguments as there are dimensions which is a list of numbers indicating the length of the desired output for each axis. The function can also accept keyword arguments which will be passed in as well. """ dtype = kwargs.get('dtype', int) args = indices(dimensions,dtype=dtype) return function(*args,**kwargs) def isscalar(num): """Returns True if the type of num is a scalar type. """ if isinstance(num, generic): return True else: return type(num) in ScalarType _lkup = { '0':'0000', '1':'0001', '2':'0010', '3':'0011', '4':'0100', '5':'0101', '6':'0110', '7':'0111', '8':'1000', '9':'1001', 'a':'1010', 'b':'1011', 'c':'1100', 'd':'1101', 'e':'1110', 'f':'1111', 'A':'1010', 'B':'1011', 'C':'1100', 'D':'1101', 'E':'1110', 'F':'1111', 'L':''} def binary_repr(num): """Return the binary representation of the input number as a string. This is equivalent to using base_repr with base 2, but about 25x faster. """ ostr = hex(num) bin = '' for ch in ostr[2:]: bin += _lkup[ch] if '1' in bin: ind = 0 while bin[ind] == '0': ind += 1 return bin[ind:] else: return '0' def base_repr (number, base=2, padding=0): """Return the representation of a number in any given base. """ chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' import math lnb = math.log(base) res = padding*chars[0] if number == 0: return res + chars[0] exponent = int (math.log (number)/lnb) while(exponent >= 0): term = long(base)**exponent lead_digit = int(number / term) res += chars[lead_digit] number -= term*lead_digit exponent -= 1 return res from cPickle import load, loads _cload = load _file = file def load(file): """Wrapper around cPickle.load which accepts either a file-like object or a filename. """ if isinstance(file, type("")): file = _file(file,"rb") return _cload(file) # These are all essentially abbreviations # These might wind up in a special abbreviations module def ones(shape, dtype=None, order='C'): """ones(shape, dtype=None) returns an array of the given dimensions which is initialized to all ones. """ a = empty(shape, dtype, order) a.fill(1) # Above is faster now after addition of fast loops. #a = zeros(shape, dtype, order) #a+=1 return a def identity(n,dtype=None): """identity(n) returns the identity 2-d array of shape n x n. """ a = array([1]+n*[0],dtype=dtype) b = empty((n,n),dtype=dtype) b.flat = a return b def allclose (a, b, rtol=1.e-5, atol=1.e-8): """ allclose(a,b,rtol=1.e-5,atol=1.e-8) Returns true if all components of a and b are equal subject to given tolerances. The relative error rtol must be positive and << 1.0 The absolute error atol comes into play for those elements of y that are very small or zero; it says how small x must be also. """ x = array(a, copy=False) y = array(b, copy=False) d = less(absolute(x-y), atol + rtol * absolute(y)) return d.ravel().all() def array_equal(a1, a2): try: a1, a2 = asarray(a1), asarray(a2) except: return 0 if a1.shape != a2.shape: return 0 return logical_and.reduce(equal(a1,a2).ravel()) def array_equiv(a1, a2): try: a1, a2 = asarray(a1), asarray(a2) except: return 0 try: return logical_and.reduce(equal(a1,a2).ravel()) except ValueError: return 0 _errdict = {"ignore":ERR_IGNORE, "warn":ERR_WARN, "raise":ERR_RAISE, "call":ERR_CALL} _errdict_rev = {} for key in _errdict.keys(): _errdict_rev[_errdict[key]] = key del key def seterr(divide=None, over=None, under=None, invalid=None): """Set how floating-point errors are handled. Valid values for each type of error are the strings "ignore", "warn", "raise", and "call". Returns the old settings. Note that operations on integer scalar types (such as int16) are handled like floating point, and are affected by these settings. Example: >>> seterr(over='raise') {'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore', 'under': 'ignore'} >>> int16(32000) * int16(3) Traceback (most recent call last): File "", line 1, in ? FloatingPointError: overflow encountered in short_scalars """ pyvals = umath.geterrobj() old = geterr() if divide is None: divide = old['divide'] if over is None: over = old['over'] if under is None: under = old['under'] if invalid is None: invalid = old['invalid'] maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) + (_errdict[over] << SHIFT_OVERFLOW ) + (_errdict[under] << SHIFT_UNDERFLOW) + (_errdict[invalid] << SHIFT_INVALID)) pyvals[1] = maskvalue umath.seterrobj(pyvals) return old def geterr(): """Get the current way of handling floating-point errors. Returns a dictionary with entries "divide", "over", "under", and "invalid", whose values are from the strings "ignore", "warn", "raise", and "call". """ maskvalue = umath.geterrobj()[1] mask = 3 res = {} val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask res['divide'] = _errdict_rev[val] val = (maskvalue >> SHIFT_OVERFLOW) & mask res['over'] = _errdict_rev[val] val = (maskvalue >> SHIFT_UNDERFLOW) & mask res['under'] = _errdict_rev[val] val = (maskvalue >> SHIFT_INVALID) & mask res['invalid'] = _errdict_rev[val] return res def setbufsize(size): """Set the size of the buffer used in ufuncs. """ if size > 10e6: raise ValueError, "Buffer size, %s, is too big." % size if size < 5: raise ValueError, "Buffer size, %s, is too small." %size if size % 16 != 0: raise ValueError, "Buffer size, %s, is not a multiple of 16." %size pyvals = umath.geterrobj() old = getbufsize() pyvals[0] = size umath.seterrobj(pyvals) return old def getbufsize(): """Return the size of the buffer used in ufuncs. """ return umath.geterrobj()[0] def seterrcall(func): """Set the callback function used when a floating-point error handler is set to 'call'. 'func' should be a function that takes two arguments. The first is type of error ("divide", "over", "under", or "invalid"), and the second is the status flag (= divide + 2*over + 4*under + 8*invalid). Returns the old handler. """ if func is not None and not callable(func): raise ValueError, "Only callable can be used as callback" pyvals = umath.geterrobj() old = geterrcall() pyvals[2] = func umath.seterrobj(pyvals) return old def geterrcall(): """Return the current callback function used on floating-point errors. """ return umath.geterrobj()[2] def _setdef(): defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT, None] umath.seterrobj(defval) # set the default values _setdef() Inf = inf = infty = Infinity = PINF nan = NaN = NAN False_ = bool_(False) True_ = bool_(True) import fromnumeric from fromnumeric import * extend_all(fromnumeric)