""" Discrete Fourier Transforms - helper.py """ # Created by Pearu Peterson, September 2002 __all__ = ['fftshift','ifftshift','fftfreq'] from numpy.core import asarray, concatenate, arange, take, \ integer, empty import types def fftshift(x,axes=None): """ fftshift(x, axes=None) -> y Shift zero-frequency component to center of spectrum. This function swaps half-spaces for all axes listed (defaults to all). Notes: If len(x) is even then the Nyquist component is y[0]. """ tmp = asarray(x) ndim = len(tmp.shape) if axes is None: axes = range(ndim) y = tmp for k in axes: n = tmp.shape[k] p2 = (n+1)/2 mylist = concatenate((arange(p2,n),arange(p2))) y = take(y,mylist,k) return y def ifftshift(x,axes=None): """ ifftshift(x,axes=None) - > y Inverse of fftshift. """ tmp = asarray(x) ndim = len(tmp.shape) if axes is None: axes = range(ndim) y = tmp for k in axes: n = tmp.shape[k] p2 = n-(n+1)/2 mylist = concatenate((arange(p2,n),arange(p2))) y = take(y,mylist,k) return y def fftfreq(n,d=1.0): """ fftfreq(n, d=1.0) -> f DFT sample frequencies The returned float array contains the frequency bins in cycles/unit (with zero at the start) given a window length n and a sample spacing d: f = [0,1,...,n/2-1,-n/2,...,-1]/(d*n) if n is even f = [0,1,...,(n-1)/2,-(n-1)/2,...,-1]/(d*n) if n is odd """ assert isinstance(n,types.IntType) or isinstance(n, integer) val = 1.0/(n*d) results = empty(n, int) N = (n-1)//2 + 1 p1 = arange(0,N,dtype=int) results[:N] = p1 p2 = arange(-(n//2),0,dtype=int) results[N:] = p2 return results * val #return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d)