""" Set operations for 1D numeric arrays based on sorting. :Contains: ediff1d, unique1d, intersect1d, intersect1d_nu, setxor1d, setmember1d, union1d, setdiff1d :Notes: All functions work best with integer numerical arrays on input (e.g. indices). For floating point arrays, innacurate results may appear due to usual round-off and floating point comparison issues. Except unique1d, union1d and intersect1d_nu, all functions expect inputs with unique elements. Speed could be gained in some operations by an implementaion of sort(), that can provide directly the permutation vectors, avoiding thus calls to argsort(). Run _test_unique1d_speed() to compare performance of numpy.unique1d() and numpy.unique() - it should be the same. To do: Optionally return indices analogously to unique1d for all functions. created: 01.11.2005 last revision: 07.01.2007 :Author: Robert Cimrman """ __all__ = ['ediff1d', 'unique1d', 'intersect1d', 'intersect1d_nu', 'setxor1d', 'setmember1d', 'union1d', 'setdiff1d'] import time import numpy as np def ediff1d(ary, to_end=None, to_begin=None): """ The differences between consecutive elements of an array. Parameters ---------- ary : array This array will be flattened before the difference is taken. to_end : number, optional If provided, this number will be tacked onto the end of the returned differences. to_begin : number, optional If provided, this number will be taked onto the beginning of the returned differences. Returns ------- ed : array The differences. Loosely, this will be (ary[1:] - ary[:-1]). """ ary = np.asarray(ary).flat ed = ary[1:] - ary[:-1] arrays = [ed] if to_begin is not None: arrays.insert(0, to_begin) if to_end is not None: arrays.append(to_end) if len(arrays) != 1: # We'll save ourselves a copy of a potentially large array in the common # case where neither to_begin or to_end was given. ed = np.hstack(arrays) return ed def unique1d(ar1, return_index=False, return_inverse=False): """ Find the unique elements of an array. Parameters ---------- ar1 : array-like This array will be flattened if it is not already 1-D. return_index : bool, optional If True, also return the indices against `ar1` that result in the unique array. return_inverse : bool, optional If True, also return the indices against the unique array that result in `ar1`. Returns ------- unique : ndarray The unique values. unique_indices : ndarray, optional The indices of the unique values. Only provided if `return_index` is True. unique_inverse : ndarray, optional The indices to reconstruct the original array. Only provided if `return_inverse` is True. See Also -------- numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. Examples -------- >>> np.unique1d([1, 1, 2, 2, 3, 3]) array([1, 2, 3]) >>> a = np.array([[1, 1], [2, 3]]) >>> np.unique1d(a) array([1, 2, 3]) Reconstruct the input from unique values: >>> np.unique1d([1,2,6,4,2,3,2], return_index=True) >>> x = [1,2,6,4,2,3,2] >>> u, i = np.unique1d(x, return_inverse=True) >>> u array([1, 2, 3, 4, 6]) >>> i array([0, 1, 4, 3, 1, 2, 1]) >>> [u[p] for p in i] [1, 2, 6, 4, 2, 3, 2] """ if return_index: import warnings warnings.warn("The order of the output arguments for " "`return_index` has changed. Before, " "the output was (indices, unique_arr), but " "has now been reversed to be more consistent.") ar = np.asarray(ar1).flatten() if ar.size == 0: if return_inverse and return_index: return ar, np.empty(0, np.bool), np.empty(0, np.bool) elif return_inverse or return_index: return ar, np.empty(0, np.bool) else: return ar if return_inverse or return_index: perm = ar.argsort() aux = ar[perm] flag = np.concatenate(([True], aux[1:] != aux[:-1])) if return_inverse: iflag = np.cumsum(flag) - 1 iperm = perm.argsort() if return_index: return aux[flag], perm[flag], iflag[iperm] else: return aux[flag], iflag[iperm] else: return aux[flag], perm[flag] else: ar.sort() flag = np.concatenate(([True], ar[1:] != ar[:-1])) return ar[flag] def intersect1d(ar1, ar2): """ Intersection returning repeated or unique elements common to both arrays. Parameters ---------- ar1,ar2 : array_like Input arrays. Returns ------- out : ndarray, shape(N,) Sorted 1D array of common elements with repeating elements. See Also -------- intersect1d_nu : Returns only unique common elements. numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. Examples -------- >>> np.intersect1d([1,3,3],[3,1,1]) array([1, 1, 3, 3]) """ aux = np.concatenate((ar1,ar2)) aux.sort() return aux[aux[1:] == aux[:-1]] def intersect1d_nu(ar1, ar2): """ Intersection returning unique elements common to both arrays. Parameters ---------- ar1,ar2 : array_like Input arrays. Returns ------- out : ndarray, shape(N,) Sorted 1D array of common and unique elements. See Also -------- intersect1d : Returns repeated or unique common elements. numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. Examples -------- >>> np.intersect1d_nu([1,3,3],[3,1,1]) array([1, 3]) """ # Might be faster than unique1d( intersect1d( ar1, ar2 ) )? aux = np.concatenate((unique1d(ar1), unique1d(ar2))) aux.sort() return aux[aux[1:] == aux[:-1]] def setxor1d(ar1, ar2): """ Set exclusive-or of 1D arrays with unique elements. Use unique1d() to generate arrays with only unique elements to use as inputs to this function. Parameters ---------- ar1 : array Input array. ar2 : array Input array. Returns ------- xor : array The values that are only in one, but not both, of the input arrays. See Also -------- numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. """ aux = np.concatenate((ar1, ar2)) if aux.size == 0: return aux aux.sort() # flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 flag = np.concatenate( ([True], aux[1:] != aux[:-1], [True] ) ) # flag2 = ediff1d( flag ) == 0 flag2 = flag[1:] == flag[:-1] return aux[flag2] def setmember1d(ar1, ar2): """ Return a boolean array set True where first element is in second array. Boolean array is the shape of `ar1` containing True where the elements of `ar1` are in `ar2` and False otherwise. Use unique1d() to generate arrays with only unique elements to use as inputs to this function. Parameters ---------- ar1 : array Input array. ar2 : array Input array. Returns ------- mask : bool-array The values ar1[mask] are in ar2. See Also -------- numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. """ ar1 = np.asarray( ar1 ) ar2 = np.asarray( ar2 ) ar = np.concatenate( (ar1, ar2 ) ) b1 = np.zeros( ar1.shape, dtype = np.int8 ) b2 = np.ones( ar2.shape, dtype = np.int8 ) tt = np.concatenate( (b1, b2) ) # We need this to be a stable sort, so always use 'mergesort' here. The # values from the first array should always come before the values from the # second array. perm = ar.argsort(kind='mergesort') aux = ar[perm] aux2 = tt[perm] # flag = ediff1d( aux, 1 ) == 0 flag = np.concatenate( (aux[1:] == aux[:-1], [False] ) ) ii = np.where( flag * aux2 )[0] aux = perm[ii+1] perm[ii+1] = perm[ii] perm[ii] = aux indx = perm.argsort(kind='mergesort')[:len( ar1 )] return flag[indx] def union1d(ar1, ar2): """ Union of 1D arrays with unique elements. Use unique1d() to generate arrays with only unique elements to use as inputs to this function. Parameters ---------- ar1 : array_like, shape(M,) Input array. ar2 : array_like, shape(N,) Input array. Returns ------- union : array Unique union of input arrays. See also -------- numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. """ return unique1d( np.concatenate( (ar1, ar2) ) ) def setdiff1d(ar1, ar2): """ Set difference of 1D arrays with unique elements. Use unique1d() to generate arrays with only unique elements to use as inputs to this function. Parameters ---------- ar1 : array Input array. ar2 : array Input comparison array. Returns ------- difference : array The values in ar1 that are not in ar2. See Also -------- numpy.lib.arraysetops : Module with a number of other functions for performing set operations on arrays. """ aux = setmember1d(ar1,ar2) if aux.size == 0: return aux else: return np.asarray(ar1)[aux == 0]