""" Set operations for 1D numeric arrays based on sort() function. Contains: ediff1d, unique1d, intersect1d, intersect1d_nu, setxor1d, setmember1d, union1d, setdiff1d Concerning the speed, test_unique1d_speed() reveals that up to 10000000 elements unique1d() is about 10 times faster than the standard dictionary-based numpy.unique(). Limitations: Except unique1d, union1d and intersect1d_nu, all functions expect inputs with unique elements. Speed could be gained in some operations by an implementaion of sort(), that can provide directly the permutation vectors, avoiding thus calls to argsort(). To do: Optionally return indices analogously to unique1d for all functions. Author: Robert Cimrman """ __all__ = ['unique1d', 'intersect1d', 'intersect1d_nu', 'setxor1d', 'setmember1d', 'union1d', 'setdiff1d'] # 02.11.2005, c import time import numpy ## # 03.11.2005, c def ediff1d( ar1, toEnd = None, toBegin = None ): """Array difference with prefixed and/or appended value.""" dar1 = ar1[1:] - ar1[:-1] if toEnd and toBegin: shape = (ar1.shape[0] + 1,) + ar1.shape[1:] ed = numpy.empty( shape, dtype = ar1.dtype ) ed[0], ed[-1] = toBegin, toEnd ed[1:-1] = dar1 elif toEnd: ed = numpy.empty( ar1.shape, dtype = ar1.dtype ) ed[-1] = toEnd ed[:-1] = dar1 elif toBegin: ed = numpy.empty( ar1.shape, dtype = ar1.dtype ) ed[0] = toBegin ed[1:] = dar1 else: ed = dar1 return ed ## # 01.11.2005, c # 02.11.2005 def unique1d( ar1, retIndx = False ): """Unique elements of 1D array. When retIndx is True, return also the indices indx such that ar1[indx] is the resulting array of unique elements.""" ar = numpy.array( ar1 ).ravel() if retIndx: perm = numpy.argsort( ar ) aux = numpy.take( ar, perm ) flag = ediff1d( aux, 1 ) != 0 return numpy.compress( flag, perm ), numpy.compress( flag, aux ) else: aux = numpy.sort( ar ) return numpy.compress( ediff1d( aux, 1 ) != 0, aux ) ## # 01.11.2005, c def intersect1d( ar1, ar2 ): """Intersection of 1D arrays with unique elements.""" aux = numpy.sort( numpy.concatenate( (ar1, ar2 ) ) ) return numpy.compress( (aux[1:] - aux[:-1]) == 0, aux ) ## # 01.11.2005, c def intersect1d_nu( ar1, ar2 ): """Intersection of 1D arrays with any elements.""" # Might be faster then unique1d( intersect1d( ar1, ar2 ) )? aux = numpy.sort( numpy.concatenate( (unique1d( ar1 ), unique1d( ar2 )) ) ) return numpy.compress( (aux[1:] - aux[:-1]) == 0, aux ) ## # 01.11.2005, c def setxor1d( ar1, ar2 ): """Set exclusive-or of 1D arrays with unique elements.""" aux = numpy.sort( numpy.concatenate( (ar1, ar2 ) ) ) flag = ediff1d( aux, toEnd = 1, toBegin = 1 ) == 0 flag2 = ediff1d( flag, 0 ) == 0 return numpy.compress( flag2, aux ) ## # 03.11.2005, c # 05.01.2006 def setmember1d( ar1, ar2 ): """Return an array of shape of ar1 containing 1 where the elements of ar1 are in ar2 and 0 otherwise.""" ar = numpy.concatenate( (ar1, ar2 ) ) tt = numpy.concatenate( (numpy.zeros_like( ar1 ), numpy.zeros_like( ar2 ) + 1) ) perm = numpy.argsort( ar ) aux = numpy.take( ar, perm ) aux2 = numpy.take( tt, perm ) flag = ediff1d( aux, 1 ) == 0 ii = numpy.where( flag * aux2 ) aux = perm[ii+1] perm[ii+1] = perm[ii] perm[ii] = aux indx = numpy.argsort( perm )[:len( ar1 )] return numpy.take( flag, indx ) ## # 03.11.2005, c def union1d( ar1, ar2 ): """Union of 1D arrays with unique elements.""" return unique1d( numpy.concatenate( (ar1, ar2) ) ) ## # 03.11.2005, c def setdiff1d( ar1, ar2 ): """Set difference of 1D arrays with unique elements.""" aux = setmember1d( ar1, ar2 ) return numpy.compress( aux == 0, ar1 ) ## # 02.11.2005, c def test_unique1d_speed( plotResults = False ): # exponents = numpy.linspace( 2, 7, 9 ) exponents = numpy.linspace( 2, 6, 9 ) ratios = [] nItems = [] dt1s = [] dt2s = [] for ii in exponents: nItem = 10 ** ii print 'using %d items:' % nItem a = numpy.fix( nItem / 10 * numpy.random.random( nItem ) ) print 'dictionary:' tt = time.clock() b = numpy.unique( a ) dt1 = time.clock() - tt print dt1 print 'array:' tt = time.clock() c = unique1d( a ) dt2 = time.clock() - tt print dt2 if dt1 < 1e-8: ratio = 'ND' else: ratio = dt2 / dt1 print 'ratio:', ratio print 'nUnique: %d == %d\n' % (len( b ), len( c )) nItems.append( nItem ) ratios.append( ratio ) dt1s.append( dt1 ) dt2s.append( dt2 ) assert numpy.alltrue( b == c ) print nItems print dt1s print dt2s print ratios if plotResults: import pylab def plotMe( fig, fun, nItems, dt1s, dt2s ): pylab.figure( fig ) fun( nItems, dt1s, 'g-o', linewidth = 2, markersize = 8 ) fun( nItems, dt2s, 'b-x', linewidth = 2, markersize = 8 ) pylab.legend( ('dictionary', 'array' ) ) pylab.xlabel( 'nItem' ) pylab.ylabel( 'time [s]' ) plotMe( 1, pylab.loglog, nItems, dt1s, dt2s ) plotMe( 2, pylab.plot, nItems, dt1s, dt2s ) pylab.show() if (__name__ == '__main__'): test_unique1d_speed( plotResults = True )