""" A buffered iterator for big arrays. This module solves the problem of iterating over a big file-based array without having to read it into memory. The ``Arrayterator`` class wraps an array object, and when iterated it will return subarrays with at most ``buf_size`` elements. The algorithm works by first finding a "running dimension", along which the blocks will be extracted. Given an array of dimensions (d1, d2, ..., dn), eg, if ``buf_size`` is smaller than ``d1`` the first dimension will be used. If, on the other hand, d1 < buf_size < d1*d2 the second dimension will be used, and so on. Blocks are extracted along this dimension, and when the last block is returned the process continues from the next dimension, until all elements have been read. """ from __future__ import division from operator import mul __all__ = ['Arrayterator'] class Arrayterator(object): """ Buffered iterator for big arrays. This class creates a buffered iterator for reading big arrays in small contiguous blocks. The class is useful for objects stored in the filesystem. It allows iteration over the object *without* reading everything in memory; instead, small blocks are read and iterated over. The class can be used with any object that supports multidimensional slices, like variables from Scientific.IO.NetCDF, pynetcdf and ndarrays. """ def __init__(self, var, buf_size=None): self.var = var self.buf_size = buf_size self.start = [0 for dim in var.shape] self.stop = [dim for dim in var.shape] self.step = [1 for dim in var.shape] def __getattr__(self, attr): return getattr(self.var, attr) def __getitem__(self, index): """ Return a new arrayterator. """ # Fix index, handling ellipsis and incomplete slices. if not isinstance(index, tuple): index = (index,) fixed = [] length, dims = len(index), len(self.shape) for slice_ in index: if slice_ is Ellipsis: fixed.extend([slice(None)] * (dims-length+1)) length = len(fixed) elif isinstance(slice_, (int, long)): fixed.append(slice(slice_, slice_+1, 1)) else: fixed.append(slice_) index = tuple(fixed) if len(index) < dims: index += (slice(None),) * (dims-len(index)) # Return a new arrayterator object. out = self.__class__(self.var, self.buf_size) for i, (start, stop, step, slice_) in enumerate( zip(self.start, self.stop, self.step, index)): out.start[i] = start + (slice_.start or 0) out.step[i] = step * (slice_.step or 1) out.stop[i] = start + (slice_.stop or stop-start) out.stop[i] = min(stop, out.stop[i]) return out def __array__(self): """ Return corresponding data. """ slice_ = tuple(slice(*t) for t in zip( self.start, self.stop, self.step)) return self.var[slice_] @property def flat(self): for block in self: for value in block.flat: yield value @property def shape(self): return tuple(((stop-start-1)//step+1) for start, stop, step in zip(self.start, self.stop, self.step)) def __iter__(self): # Skip arrays with degenerate dimensions if [dim for dim in self.shape if dim <= 0]: raise StopIteration start = self.start[:] stop = self.stop[:] step = self.step[:] ndims = len(self.var.shape) while 1: count = self.buf_size or reduce(mul, self.shape) # iterate over each dimension, looking for the # running dimension (ie, the dimension along which # the blocks will be built from) rundim = 0 for i in range(ndims-1, -1, -1): # if count is zero we ran out of elements to read # along higher dimensions, so we read only a single position if count == 0: stop[i] = start[i]+1 elif count <= self.shape[i]: # limit along this dimension stop[i] = start[i] + count*step[i] rundim = i else: stop[i] = self.stop[i] # read everything along this # dimension stop[i] = min(self.stop[i], stop[i]) count = count//self.shape[i] # yield a block slice_ = tuple(slice(*t) for t in zip(start, stop, step)) yield self.var[slice_] # Update start position, taking care of overflow to # other dimensions start[rundim] = stop[rundim] # start where we stopped for i in range(ndims-1, 0, -1): if start[i] >= self.stop[i]: start[i] = self.start[i] start[i-1] += self.step[i-1] if start[0] >= self.stop[0]: raise StopIteration