""" Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the input data-type in certain domains of the input. For example, for functions like log() with branch cuts, the versions in this module provide the mathematically valid answers in the complex plane: >>> import math >>> from numpy.lib import scimath >>> scimath.log(-math.exp(1)) == (1+1j*math.pi) True Similarly, sqrt(), other base logarithms, power() and trig functions are correctly handled. See their respective docstrings for specific examples. """ __all__ = ['sqrt', 'log', 'log2', 'logn','log10', 'power', 'arccos', 'arcsin', 'arctanh'] import numpy.core.numeric as nx import numpy.core.numerictypes as nt from numpy.core.numeric import asarray, any from numpy.lib.type_check import isreal _ln2 = nx.log(2.0) def _tocomplex(arr): """Convert its input `arr` to a complex array. The input is returned as a complex array of the smallest type that will fit the original data: types like single, byte, short, etc. become csingle, while others become cdouble. A copy of the input is always made. Parameters ---------- arr : array Returns ------- array An array with the same input data as the input but in complex form. Examples -------- First, consider an input of type short: >>> a = np.array([1,2,3],np.short) >>> ac = np.lib.scimath._tocomplex(a); ac array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) >>> ac.dtype dtype('complex64') If the input is of type double, the output is correspondingly of the complex double type as well: >>> b = np.array([1,2,3],np.double) >>> bc = np.lib.scimath._tocomplex(b); bc array([ 1.+0.j, 2.+0.j, 3.+0.j]) >>> bc.dtype dtype('complex128') Note that even if the input was complex to begin with, a copy is still made, since the astype() method always copies: >>> c = np.array([1,2,3],np.csingle) >>> cc = np.lib.scimath._tocomplex(c); cc array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) >>> c *= 2; c array([ 2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64) >>> cc array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) """ if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte, nt.ushort,nt.csingle)): return arr.astype(nt.csingle) else: return arr.astype(nt.cdouble) def _fix_real_lt_zero(x): """Convert `x` to complex if it has real, negative components. Otherwise, output is just the array version of the input (via asarray). Parameters ---------- x : array_like Returns ------- array Examples -------- >>> np.lib.scimath._fix_real_lt_zero([1,2]) array([1, 2]) >>> np.lib.scimath._fix_real_lt_zero([-1,2]) array([-1.+0.j, 2.+0.j]) """ x = asarray(x) if any(isreal(x) & (x<0)): x = _tocomplex(x) return x def _fix_int_lt_zero(x): """Convert `x` to double if it has real, negative components. Otherwise, output is just the array version of the input (via asarray). Parameters ---------- x : array_like Returns ------- array Examples -------- >>> np.lib.scimath._fix_int_lt_zero([1,2]) array([1, 2]) >>> np.lib.scimath._fix_int_lt_zero([-1,2]) array([-1., 2.]) """ x = asarray(x) if any(isreal(x) & (x < 0)): x = x * 1.0 return x def _fix_real_abs_gt_1(x): """Convert `x` to complex if it has real components x_i with abs(x_i)>1. Otherwise, output is just the array version of the input (via asarray). Parameters ---------- x : array_like Returns ------- array Examples -------- >>> np.lib.scimath._fix_real_abs_gt_1([0,1]) array([0, 1]) >>> np.lib.scimath._fix_real_abs_gt_1([0,2]) array([ 0.+0.j, 2.+0.j]) """ x = asarray(x) if any(isreal(x) & (abs(x)>1)): x = _tocomplex(x) return x def sqrt(x): """ Return the square root of x. Parameters ---------- x : array_like Returns ------- out : array_like Notes ----- As the numpy.sqrt, this returns the principal square root of x, which is what most people mean when they use square root; the principal square root of x is not any number z such as z^2 = x. For positive numbers, the principal square root is defined as the positive number z such as z^2 = x. The principal square root of -1 is i, the principal square root of any negative number -x is defined a i * sqrt(x). For any non zero complex number, it is defined by using the following branch cut: x = r e^(i t) with r > 0 and -pi < t <= pi. The principal square root is then sqrt(r) e^(i t/2). Examples -------- For real, non-negative inputs this works just like numpy.sqrt(): >>> np.lib.scimath.sqrt(1) 1.0 >>> np.lib.scimath.sqrt([1,4]) array([ 1., 2.]) But it automatically handles negative inputs: >>> np.lib.scimath.sqrt(-1) (0.0+1.0j) >>> np.lib.scimath.sqrt([-1,4]) array([ 0.+1.j, 2.+0.j]) """ x = _fix_real_lt_zero(x) return nx.sqrt(x) def log(x): """ Return the natural logarithm of x. If x contains negative inputs, the answer is computed and returned in the complex domain. Parameters ---------- x : array_like Returns ------- out : array_like Examples -------- >>> import math >>> np.lib.scimath.log(math.exp(1)) 1.0 Negative arguments are correctly handled (recall that for negative arguments, the identity exp(log(z))==z does not hold anymore): >>> np.lib.scimath.log(-math.exp(1)) == (1+1j*math.pi) True """ x = _fix_real_lt_zero(x) return nx.log(x) def log10(x): """ Return the base 10 logarithm of x. If x contains negative inputs, the answer is computed and returned in the complex domain. Parameters ---------- x : array_like Returns ------- out : array_like Examples -------- (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) >>> np.lib.scimath.log10([10**1,10**2]) array([ 1., 2.]) >>> np.lib.scimath.log10([-10**1,-10**2,10**2]) array([ 1.+1.3644j, 2.+1.3644j, 2.+0.j ]) """ x = _fix_real_lt_zero(x) return nx.log10(x) def logn(n, x): """ Take log base n of x. If x contains negative inputs, the answer is computed and returned in the complex domain. Parameters ---------- x : array_like Returns ------- out : array_like Examples -------- (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) >>> np.lib.scimath.logn(2,[4,8]) array([ 2., 3.]) >>> np.lib.scimath.logn(2,[-4,-8,8]) array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) n = _fix_real_lt_zero(n) return nx.log(x)/nx.log(n) def log2(x): """ Take log base 2 of x. If x contains negative inputs, the answer is computed and returned in the complex domain. Parameters ---------- x : array_like Returns ------- out : array_like Examples -------- (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) >>> np.lib.scimath.log2([4,8]) array([ 2., 3.]) >>> np.lib.scimath.log2([-4,-8,8]) array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) return nx.log2(x) def power(x, p): """ Return x**p. If x contains negative values, it is converted to the complex domain. If p contains negative values, it is converted to floating point. Parameters ---------- x : array_like p : array_like of integers Returns ------- out : array_like Examples -------- (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) >>> np.lib.scimath.power([2,4],2) array([ 4, 16]) >>> np.lib.scimath.power([2,4],-2) array([ 0.25 , 0.0625]) >>> np.lib.scimath.power([-2,4],2) array([ 4.+0.j, 16.+0.j]) """ x = _fix_real_lt_zero(x) p = _fix_int_lt_zero(p) return nx.power(x, p) def arccos(x): """Compute the inverse cosine of x. For real x with abs(x)<=1, this returns the principal value. If abs(x)>1, the complex arccos() is computed. Parameters ---------- x : array_like Returns ------- array_like Examples -------- >>> np.set_printoptions(precision=4) >>> np.lib.scimath.arccos(1) 0.0 >>> np.lib.scimath.arccos([1,2]) array([ 0.-0.j , 0.+1.317j]) """ x = _fix_real_abs_gt_1(x) return nx.arccos(x) def arcsin(x): """ Compute the inverse sine of x. For real x with abs(x)<=1, this returns the principal value. If abs(x)>1, the complex arcsin() is computed. Parameters ---------- x : array_like Returns ------- array_like Examples -------- (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) >>> np.lib.scimath.arcsin(0) 0.0 >>> np.lib.scimath.arcsin([0,1]) array([ 0. , 1.5708]) """ x = _fix_real_abs_gt_1(x) return nx.arcsin(x) def arctanh(x): """ Compute the inverse hyperbolic tangent of x. For real x with abs(x)<=1, this returns the principal value. If abs(x)>1, the complex arctanh() is computed. Parameters ---------- x : array_like Returns ------- out : array_like Examples -------- (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) >>> np.lib.scimath.arctanh(0) 0.0 >>> np.lib.scimath.arctanh([0,2]) array([ 0.0000+0.j , 0.5493-1.5708j]) """ x = _fix_real_abs_gt_1(x) return nx.arctanh(x)