#define NPY_NO_DEPRECATED_API NPY_API_VERSION #include #include #include #include "numpy/arrayobject.h" #include "numpy/npy_3kcompat.h" #include "npy_config.h" #include "numpy/ufuncobject.h" /* * Returns -1 if the array is monotonic decreasing, * +1 if the array is monotonic increasing, * and 0 if the array is not monotonic. */ static int check_array_monotonic(const double *a, npy_int lena) { npy_intp i; double next; double last = a[0]; /* Skip repeated values at the beginning of the array */ for (i = 1; (i < lena) && (a[i] == last); i++); if (i == lena) { /* all bin edges hold the same value */ return 1; } next = a[i]; if (last < next) { /* Possibly monotonic increasing */ for (i += 1; i < lena; i++) { last = next; next = a[i]; if (last > next) { return 0; } } return 1; } else { /* last > next, possibly monotonic decreasing */ for (i += 1; i < lena; i++) { last = next; next = a[i]; if (last < next) { return 0; } } return -1; } } /* Find the minimum and maximum of an integer array */ static void minmax(const npy_intp *data, npy_intp data_len, npy_intp *mn, npy_intp *mx) { npy_intp min = *data; npy_intp max = *data; while (--data_len) { const npy_intp val = *(++data); if (val < min) { min = val; } else if (val > max) { max = val; } } *mn = min; *mx = max; } /* * arr_bincount is registered as bincount. * * bincount accepts one, two or three arguments. The first is an array of * non-negative integers The second, if present, is an array of weights, * which must be promotable to double. Call these arguments list and * weight. Both must be one-dimensional with len(weight) == len(list). If * weight is not present then bincount(list)[i] is the number of occurrences * of i in list. If weight is present then bincount(self,list, weight)[i] * is the sum of all weight[j] where list [j] == i. Self is not used. * The third argument, if present, is a minimum length desired for the * output array. */ static PyObject * arr_bincount(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds) { PyArray_Descr *type; PyObject *list = NULL, *weight=Py_None, *mlength=Py_None; PyArrayObject *lst=NULL, *ans=NULL, *wts=NULL; npy_intp *numbers, *ians, len , mx, mn, ans_size, minlength; int i; double *weights , *dans; static char *kwlist[] = {"list", "weights", "minlength", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|OO", kwlist, &list, &weight, &mlength)) { goto fail; } lst = (PyArrayObject *)PyArray_ContiguousFromAny(list, NPY_INTP, 1, 1); if (lst == NULL) { goto fail; } len = PyArray_SIZE(lst); type = PyArray_DescrFromType(NPY_INTP); if (mlength == Py_None) { minlength = 0; } else { minlength = PyArray_PyIntAsIntp(mlength); if (minlength <= 0) { if (!PyErr_Occurred()) { PyErr_SetString(PyExc_ValueError, "minlength must be positive"); } goto fail; } } /* handle empty list */ if (len == 0) { if (!(ans = (PyArrayObject *)PyArray_Zeros(1, &minlength, type, 0))){ goto fail; } Py_DECREF(lst); return (PyObject *)ans; } numbers = (npy_intp *) PyArray_DATA(lst); minmax(numbers, len, &mn, &mx); if (mn < 0) { PyErr_SetString(PyExc_ValueError, "The first argument of bincount must be non-negative"); goto fail; } ans_size = mx + 1; if (mlength != Py_None) { if (ans_size < minlength) { ans_size = minlength; } } if (weight == Py_None) { ans = (PyArrayObject *)PyArray_Zeros(1, &ans_size, type, 0); if (ans == NULL) { goto fail; } ians = (npy_intp *)(PyArray_DATA(ans)); NPY_BEGIN_ALLOW_THREADS; for (i = 0; i < len; i++) ians [numbers [i]] += 1; NPY_END_ALLOW_THREADS; Py_DECREF(lst); } else { wts = (PyArrayObject *)PyArray_ContiguousFromAny( weight, NPY_DOUBLE, 1, 1); if (wts == NULL) { goto fail; } weights = (double *)PyArray_DATA (wts); if (PyArray_SIZE(wts) != len) { PyErr_SetString(PyExc_ValueError, "The weights and list don't have the same length."); goto fail; } type = PyArray_DescrFromType(NPY_DOUBLE); ans = (PyArrayObject *)PyArray_Zeros(1, &ans_size, type, 0); if (ans == NULL) { goto fail; } dans = (double *)PyArray_DATA(ans); NPY_BEGIN_ALLOW_THREADS; for (i = 0; i < len; i++) { dans[numbers[i]] += weights[i]; } NPY_END_ALLOW_THREADS; Py_DECREF(lst); Py_DECREF(wts); } return (PyObject *)ans; fail: Py_XDECREF(lst); Py_XDECREF(wts); Py_XDECREF(ans); return NULL; } /* * digitize(x, bins, right=False) returns an array of integers the same length * as x. The values i returned are such that bins[i - 1] <= x < bins[i] if * bins is monotonically increasing, or bins[i - 1] > x >= bins[i] if bins * is monotonically decreasing. Beyond the bounds of bins, returns either * i = 0 or i = len(bins) as appropriate. If right == True the comparison * is bins [i - 1] < x <= bins[i] or bins [i - 1] >= x > bins[i] */ static PyObject * arr_digitize(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds) { PyObject *obj_x = NULL; PyObject *obj_bins = NULL; PyArrayObject *arr_x = NULL; PyArrayObject *arr_bins = NULL; PyObject *ret = NULL; npy_intp len_bins; int monotonic, right = 0; NPY_BEGIN_THREADS_DEF static char *kwlist[] = {"x", "bins", "right", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO|i", kwlist, &obj_x, &obj_bins, &right)) { goto fail; } /* PyArray_SearchSorted will make `x` contiguous even if we don't */ arr_x = (PyArrayObject *)PyArray_FROMANY(obj_x, NPY_DOUBLE, 0, 0, NPY_ARRAY_CARRAY_RO); if (arr_x == NULL) { goto fail; } /* TODO: `bins` could be strided, needs change to check_array_monotonic */ arr_bins = (PyArrayObject *)PyArray_FROMANY(obj_bins, NPY_DOUBLE, 1, 1, NPY_ARRAY_CARRAY_RO); if (arr_bins == NULL) { goto fail; } len_bins = PyArray_SIZE(arr_bins); if (len_bins == 0) { PyErr_SetString(PyExc_ValueError, "bins must have non-zero length"); goto fail; } NPY_BEGIN_THREADS_THRESHOLDED(len_bins) monotonic = check_array_monotonic((const double *)PyArray_DATA(arr_bins), len_bins); NPY_END_THREADS if (monotonic == 0) { PyErr_SetString(PyExc_ValueError, "bins must be monotonically increasing or decreasing"); goto fail; } /* PyArray_SearchSorted needs an increasing array */ if (monotonic == - 1) { PyArrayObject *arr_tmp = NULL; npy_intp shape = PyArray_DIM(arr_bins, 0); npy_intp stride = -PyArray_STRIDE(arr_bins, 0); void *data = (void *)(PyArray_BYTES(arr_bins) - stride * (shape - 1)); arr_tmp = (PyArrayObject *)PyArray_New(&PyArray_Type, 1, &shape, NPY_DOUBLE, &stride, data, 0, PyArray_FLAGS(arr_bins), NULL); if (!arr_tmp) { goto fail; } if (PyArray_SetBaseObject(arr_tmp, (PyObject *)arr_bins) < 0) { Py_DECREF(arr_tmp); goto fail; } arr_bins = arr_tmp; } ret = PyArray_SearchSorted(arr_bins, (PyObject *)arr_x, right ? NPY_SEARCHLEFT : NPY_SEARCHRIGHT, NULL); if (!ret) { goto fail; } /* If bins is decreasing, ret has bins from end, not start */ if (monotonic == -1) { npy_intp *ret_data = (npy_intp *)PyArray_DATA((PyArrayObject *)ret); npy_intp len_ret = PyArray_SIZE((PyArrayObject *)ret); NPY_BEGIN_THREADS_THRESHOLDED(len_ret) while (len_ret--) { *ret_data = len_bins - *ret_data; ret_data++; } NPY_END_THREADS } fail: Py_XDECREF(arr_x); Py_XDECREF(arr_bins); return ret; } static char arr_insert__doc__[] = "Insert vals sequentially into equivalent 1-d positions indicated by mask."; /* * Insert values from an input array into an output array, at positions * indicated by a mask. If the arrays are of dtype object (indicated by * the objarray flag), take care of reference counting. * * This function implements the copying logic of arr_insert() defined * below. */ static void arr_insert_loop(char *mptr, char *vptr, char *input_data, char *zero, char *avals_data, int melsize, int delsize, int objarray, int totmask, int numvals, int nd, npy_intp *instrides, npy_intp *inshape) { int mindx, rem_indx, indx, i, copied; /* * Walk through mask array, when non-zero is encountered * copy next value in the vals array to the input array. * If we get through the value array, repeat it as necessary. */ copied = 0; for (mindx = 0; mindx < totmask; mindx++) { if (memcmp(mptr,zero,melsize) != 0) { /* compute indx into input array */ rem_indx = mindx; indx = 0; for (i = nd - 1; i > 0; --i) { indx += (rem_indx % inshape[i]) * instrides[i]; rem_indx /= inshape[i]; } indx += rem_indx * instrides[0]; /* fprintf(stderr, "mindx = %d, indx=%d\n", mindx, indx); */ /* Copy value element over to input array */ memcpy(input_data+indx,vptr,delsize); if (objarray) { Py_INCREF(*((PyObject **)vptr)); } vptr += delsize; copied += 1; /* If we move past value data. Reset */ if (copied >= numvals) { vptr = avals_data; } } mptr += melsize; } } /* * Returns input array with values inserted sequentially into places * indicated by the mask */ static PyObject * arr_insert(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwdict) { PyObject *mask = NULL, *vals = NULL; PyArrayObject *ainput = NULL, *amask = NULL, *avals = NULL, *tmp = NULL; int numvals, totmask, sameshape; char *input_data, *mptr, *vptr, *zero = NULL; int melsize, delsize, nd, objarray, k; npy_intp *instrides, *inshape; static char *kwlist[] = {"input", "mask", "vals", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwdict, "O&OO", kwlist, PyArray_Converter, &ainput, &mask, &vals)) { goto fail; } amask = (PyArrayObject *)PyArray_FROM_OF(mask, NPY_ARRAY_CARRAY); if (amask == NULL) { goto fail; } /* Cast an object array */ if (PyArray_DESCR(amask)->type_num == NPY_OBJECT) { tmp = (PyArrayObject *)PyArray_Cast(amask, NPY_INTP); if (tmp == NULL) { goto fail; } Py_DECREF(amask); amask = tmp; } sameshape = 1; if (PyArray_NDIM(amask) == PyArray_NDIM(ainput)) { for (k = 0; k < PyArray_NDIM(amask); k++) { if (PyArray_DIMS(amask)[k] != PyArray_DIMS(ainput)[k]) { sameshape = 0; } } } else { /* Test to see if amask is 1d */ if (PyArray_NDIM(amask) != 1) { sameshape = 0; } else if ((PyArray_SIZE(ainput)) != PyArray_SIZE(amask)) { sameshape = 0; } } if (!sameshape) { PyErr_SetString(PyExc_TypeError, "mask array must be 1-d or same shape as input array"); goto fail; } avals = (PyArrayObject *)PyArray_FromObject(vals, PyArray_DESCR(ainput)->type_num, 0, 1); if (avals == NULL) { goto fail; } numvals = PyArray_SIZE(avals); nd = PyArray_NDIM(ainput); input_data = PyArray_DATA(ainput); mptr = PyArray_DATA(amask); melsize = PyArray_DESCR(amask)->elsize; vptr = PyArray_DATA(avals); delsize = PyArray_DESCR(avals)->elsize; zero = PyArray_Zero(amask); if (zero == NULL) { goto fail; } objarray = (PyArray_DESCR(ainput)->type_num == NPY_OBJECT); /* Handle zero-dimensional case separately */ if (nd == 0) { if (memcmp(mptr,zero,melsize) != 0) { /* Copy value element over to input array */ memcpy(input_data,vptr,delsize); if (objarray) { Py_INCREF(*((PyObject **)vptr)); } } Py_DECREF(amask); Py_DECREF(avals); PyDataMem_FREE(zero); Py_DECREF(ainput); Py_INCREF(Py_None); return Py_None; } totmask = (int) PyArray_SIZE(amask); instrides = PyArray_STRIDES(ainput); inshape = PyArray_DIMS(ainput); if (objarray) { /* object array, need to refcount, can't release the GIL */ arr_insert_loop(mptr, vptr, input_data, zero, PyArray_DATA(avals), melsize, delsize, objarray, totmask, numvals, nd, instrides, inshape); } else { /* No increfs take place in arr_insert_loop, so release the GIL */ NPY_BEGIN_ALLOW_THREADS; arr_insert_loop(mptr, vptr, input_data, zero, PyArray_DATA(avals), melsize, delsize, objarray, totmask, numvals, nd, instrides, inshape); NPY_END_ALLOW_THREADS; } Py_DECREF(amask); Py_DECREF(avals); PyDataMem_FREE(zero); Py_DECREF(ainput); Py_INCREF(Py_None); return Py_None; fail: PyDataMem_FREE(zero); Py_XDECREF(ainput); Py_XDECREF(amask); Py_XDECREF(avals); return NULL; } /** @brief Use bisection on a sorted array to find first entry > key. * * Use bisection to find an index i s.t. arr[i] <= key < arr[i + 1]. If there is * no such i the error returns are: * key < arr[0] -- -1 * key == arr[len - 1] -- len - 1 * key > arr[len - 1] -- len * The array is assumed contiguous and sorted in ascending order. * * @param key key value. * @param arr contiguous sorted array to be searched. * @param len length of the array. * @return index */ static npy_intp binary_search(double key, double arr [], npy_intp len) { npy_intp imin = 0; npy_intp imax = len; if (key > arr[len - 1]) { return len; } while (imin < imax) { npy_intp imid = imin + ((imax - imin) >> 1); if (key >= arr[imid]) { imin = imid + 1; } else { imax = imid; } } return imin - 1; } static PyObject * arr_interp(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwdict) { PyObject *fp, *xp, *x; PyObject *left = NULL, *right = NULL; PyArrayObject *afp = NULL, *axp = NULL, *ax = NULL, *af = NULL; npy_intp i, lenx, lenxp; double lval, rval; double *dy, *dx, *dz, *dres, *slopes; static char *kwlist[] = {"x", "xp", "fp", "left", "right", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwdict, "OOO|OO", kwlist, &x, &xp, &fp, &left, &right)) { return NULL; } afp = (PyArrayObject *)PyArray_ContiguousFromAny(fp, NPY_DOUBLE, 1, 1); if (afp == NULL) { return NULL; } axp = (PyArrayObject *)PyArray_ContiguousFromAny(xp, NPY_DOUBLE, 1, 1); if (axp == NULL) { goto fail; } ax = (PyArrayObject *)PyArray_ContiguousFromAny(x, NPY_DOUBLE, 1, 0); if (ax == NULL) { goto fail; } lenxp = PyArray_DIMS(axp)[0]; if (lenxp == 0) { PyErr_SetString(PyExc_ValueError, "array of sample points is empty"); goto fail; } if (PyArray_DIMS(afp)[0] != lenxp) { PyErr_SetString(PyExc_ValueError, "fp and xp are not of the same length."); goto fail; } af = (PyArrayObject *)PyArray_SimpleNew(PyArray_NDIM(ax), PyArray_DIMS(ax), NPY_DOUBLE); if (af == NULL) { goto fail; } lenx = PyArray_SIZE(ax); dy = (double *)PyArray_DATA(afp); dx = (double *)PyArray_DATA(axp); dz = (double *)PyArray_DATA(ax); dres = (double *)PyArray_DATA(af); /* Get left and right fill values. */ if ((left == NULL) || (left == Py_None)) { lval = dy[0]; } else { lval = PyFloat_AsDouble(left); if ((lval == -1) && PyErr_Occurred()) { goto fail; } } if ((right == NULL) || (right == Py_None)) { rval = dy[lenxp-1]; } else { rval = PyFloat_AsDouble(right); if ((rval == -1) && PyErr_Occurred()) { goto fail; } } /* only pre-calculate slopes if there are relatively few of them. */ if (lenxp <= lenx) { slopes = (double *) PyArray_malloc((lenxp - 1)*sizeof(double)); if (! slopes) { goto fail; } NPY_BEGIN_ALLOW_THREADS; for (i = 0; i < lenxp - 1; i++) { slopes[i] = (dy[i + 1] - dy[i])/(dx[i + 1] - dx[i]); } for (i = 0; i < lenx; i++) { const double x = dz[i]; npy_intp j; if (npy_isnan(x)) { dres[i] = x; continue; } j = binary_search(x, dx, lenxp); if (j == -1) { dres[i] = lval; } else if (j == lenxp - 1) { dres[i] = dy[j]; } else if (j == lenxp) { dres[i] = rval; } else { dres[i] = slopes[j]*(x - dx[j]) + dy[j]; } } NPY_END_ALLOW_THREADS; PyArray_free(slopes); } else { NPY_BEGIN_ALLOW_THREADS; for (i = 0; i < lenx; i++) { const double x = dz[i]; npy_intp j; if (npy_isnan(x)) { dres[i] = x; continue; } j = binary_search(x, dx, lenxp); if (j == -1) { dres[i] = lval; } else if (j == lenxp - 1) { dres[i] = dy[j]; } else if (j == lenxp) { dres[i] = rval; } else { const double slope = (dy[j + 1] - dy[j])/(dx[j + 1] - dx[j]); dres[i] = slope*(x - dx[j]) + dy[j]; } } NPY_END_ALLOW_THREADS; } Py_DECREF(afp); Py_DECREF(axp); Py_DECREF(ax); return (PyObject *)af; fail: Py_XDECREF(afp); Py_XDECREF(axp); Py_XDECREF(ax); Py_XDECREF(af); return NULL; } /* * Converts a Python sequence into 'count' PyArrayObjects * * seq - Input Python object, usually a tuple but any sequence works. * op - Where the arrays are placed. * count - How many arrays there should be (errors if it doesn't match). * paramname - The name of the parameter that produced 'seq'. */ static int sequence_to_arrays(PyObject *seq, PyArrayObject **op, int count, char *paramname) { int i; if (!PySequence_Check(seq) || PySequence_Size(seq) != count) { PyErr_Format(PyExc_ValueError, "parameter %s must be a sequence of length %d", paramname, count); return -1; } for (i = 0; i < count; ++i) { PyObject *item = PySequence_GetItem(seq, i); if (item == NULL) { while (--i >= 0) { Py_DECREF(op[i]); op[i] = NULL; } return -1; } op[i] = (PyArrayObject *)PyArray_FromAny(item, NULL, 0, 0, 0, NULL); if (op[i] == NULL) { while (--i >= 0) { Py_DECREF(op[i]); op[i] = NULL; } Py_DECREF(item); return -1; } Py_DECREF(item); } return 0; } /* Inner loop for unravel_index */ static int ravel_multi_index_loop(int ravel_ndim, npy_intp *ravel_dims, npy_intp *ravel_strides, npy_intp count, NPY_CLIPMODE *modes, char **coords, npy_intp *coords_strides) { int i; char invalid; npy_intp j, m; NPY_BEGIN_ALLOW_THREADS; invalid = 0; while (count--) { npy_intp raveled = 0; for (i = 0; i < ravel_ndim; ++i) { m = ravel_dims[i]; j = *(npy_intp *)coords[i]; switch (modes[i]) { case NPY_RAISE: if (j < 0 || j >= m) { invalid = 1; goto end_while; } break; case NPY_WRAP: if (j < 0) { j += m; if (j < 0) { j = j % m; if (j != 0) { j += m; } } } else if (j >= m) { j -= m; if (j >= m) { j = j % m; } } break; case NPY_CLIP: if (j < 0) { j = 0; } else if (j >= m) { j = m - 1; } break; } raveled += j * ravel_strides[i]; coords[i] += coords_strides[i]; } *(npy_intp *)coords[ravel_ndim] = raveled; coords[ravel_ndim] += coords_strides[ravel_ndim]; } end_while: NPY_END_ALLOW_THREADS; if (invalid) { PyErr_SetString(PyExc_ValueError, "invalid entry in coordinates array"); return NPY_FAIL; } return NPY_SUCCEED; } /* ravel_multi_index implementation - see add_newdocs.py */ static PyObject * arr_ravel_multi_index(PyObject *self, PyObject *args, PyObject *kwds) { int i, s; PyObject *mode0=NULL, *coords0=NULL; PyArrayObject *ret = NULL; PyArray_Dims dimensions={0,0}; npy_intp ravel_strides[NPY_MAXDIMS]; NPY_ORDER order = NPY_CORDER; NPY_CLIPMODE modes[NPY_MAXDIMS]; PyArrayObject *op[NPY_MAXARGS]; PyArray_Descr *dtype[NPY_MAXARGS]; npy_uint32 op_flags[NPY_MAXARGS]; NpyIter *iter = NULL; char *kwlist[] = {"multi_index", "dims", "mode", "order", NULL}; memset(op, 0, sizeof(op)); dtype[0] = NULL; if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO&|OO&:ravel_multi_index", kwlist, &coords0, PyArray_IntpConverter, &dimensions, &mode0, PyArray_OrderConverter, &order)) { goto fail; } if (dimensions.len+1 > NPY_MAXARGS) { PyErr_SetString(PyExc_ValueError, "too many dimensions passed to ravel_multi_index"); goto fail; } if (!PyArray_ConvertClipmodeSequence(mode0, modes, dimensions.len)) { goto fail; } switch (order) { case NPY_CORDER: s = 1; for (i = dimensions.len-1; i >= 0; --i) { ravel_strides[i] = s; s *= dimensions.ptr[i]; } break; case NPY_FORTRANORDER: s = 1; for (i = 0; i < dimensions.len; ++i) { ravel_strides[i] = s; s *= dimensions.ptr[i]; } break; default: PyErr_SetString(PyExc_ValueError, "only 'C' or 'F' order is permitted"); goto fail; } /* Get the multi_index into op */ if (sequence_to_arrays(coords0, op, dimensions.len, "multi_index") < 0) { goto fail; } for (i = 0; i < dimensions.len; ++i) { op_flags[i] = NPY_ITER_READONLY| NPY_ITER_ALIGNED; } op_flags[dimensions.len] = NPY_ITER_WRITEONLY| NPY_ITER_ALIGNED| NPY_ITER_ALLOCATE; dtype[0] = PyArray_DescrFromType(NPY_INTP); for (i = 1; i <= dimensions.len; ++i) { dtype[i] = dtype[0]; } iter = NpyIter_MultiNew(dimensions.len+1, op, NPY_ITER_BUFFERED| NPY_ITER_EXTERNAL_LOOP| NPY_ITER_ZEROSIZE_OK, NPY_KEEPORDER, NPY_SAME_KIND_CASTING, op_flags, dtype); if (iter == NULL) { goto fail; } if (NpyIter_GetIterSize(iter) != 0) { NpyIter_IterNextFunc *iternext; char **dataptr; npy_intp *strides; npy_intp *countptr; iternext = NpyIter_GetIterNext(iter, NULL); if (iternext == NULL) { goto fail; } dataptr = NpyIter_GetDataPtrArray(iter); strides = NpyIter_GetInnerStrideArray(iter); countptr = NpyIter_GetInnerLoopSizePtr(iter); do { if (ravel_multi_index_loop(dimensions.len, dimensions.ptr, ravel_strides, *countptr, modes, dataptr, strides) != NPY_SUCCEED) { goto fail; } } while(iternext(iter)); } ret = NpyIter_GetOperandArray(iter)[dimensions.len]; Py_INCREF(ret); Py_DECREF(dtype[0]); for (i = 0; i < dimensions.len; ++i) { Py_XDECREF(op[i]); } PyDimMem_FREE(dimensions.ptr); NpyIter_Deallocate(iter); return PyArray_Return(ret); fail: Py_XDECREF(dtype[0]); for (i = 0; i < dimensions.len; ++i) { Py_XDECREF(op[i]); } PyDimMem_FREE(dimensions.ptr); NpyIter_Deallocate(iter); return NULL; } /* C-order inner loop for unravel_index */ static int unravel_index_loop_corder(int unravel_ndim, npy_intp *unravel_dims, npy_intp unravel_size, npy_intp count, char *indices, npy_intp indices_stride, npy_intp *coords) { int i; char invalid; npy_intp val; NPY_BEGIN_ALLOW_THREADS; invalid = 0; while (count--) { val = *(npy_intp *)indices; if (val < 0 || val >= unravel_size) { invalid = 1; break; } for (i = unravel_ndim-1; i >= 0; --i) { coords[i] = val % unravel_dims[i]; val /= unravel_dims[i]; } coords += unravel_ndim; indices += indices_stride; } NPY_END_ALLOW_THREADS; if (invalid) { PyErr_SetString(PyExc_ValueError, "invalid entry in index array"); return NPY_FAIL; } return NPY_SUCCEED; } /* Fortran-order inner loop for unravel_index */ static int unravel_index_loop_forder(int unravel_ndim, npy_intp *unravel_dims, npy_intp unravel_size, npy_intp count, char *indices, npy_intp indices_stride, npy_intp *coords) { int i; char invalid; npy_intp val; NPY_BEGIN_ALLOW_THREADS; invalid = 0; while (count--) { val = *(npy_intp *)indices; if (val < 0 || val >= unravel_size) { invalid = 1; break; } for (i = 0; i < unravel_ndim; ++i) { *coords++ = val % unravel_dims[i]; val /= unravel_dims[i]; } indices += indices_stride; } NPY_END_ALLOW_THREADS; if (invalid) { PyErr_SetString(PyExc_ValueError, "invalid entry in index array"); return NPY_FAIL; } return NPY_SUCCEED; } /* unravel_index implementation - see add_newdocs.py */ static PyObject * arr_unravel_index(PyObject *self, PyObject *args, PyObject *kwds) { PyObject *indices0 = NULL, *ret_tuple = NULL; PyArrayObject *ret_arr = NULL; PyArrayObject *indices = NULL; PyArray_Descr *dtype = NULL; PyArray_Dims dimensions={0,0}; NPY_ORDER order = NPY_CORDER; npy_intp unravel_size; NpyIter *iter = NULL; int i, ret_ndim; npy_intp ret_dims[NPY_MAXDIMS], ret_strides[NPY_MAXDIMS]; char *kwlist[] = {"indices", "dims", "order", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO&|O&:unravel_index", kwlist, &indices0, PyArray_IntpConverter, &dimensions, PyArray_OrderConverter, &order)) { goto fail; } if (dimensions.len == 0) { PyErr_SetString(PyExc_ValueError, "dims must have at least one value"); goto fail; } unravel_size = PyArray_MultiplyList(dimensions.ptr, dimensions.len); if (!PyArray_Check(indices0)) { indices = (PyArrayObject*)PyArray_FromAny(indices0, NULL, 0, 0, 0, NULL); if (indices == NULL) { goto fail; } } else { indices = (PyArrayObject *)indices0; Py_INCREF(indices); } dtype = PyArray_DescrFromType(NPY_INTP); if (dtype == NULL) { goto fail; } iter = NpyIter_New(indices, NPY_ITER_READONLY| NPY_ITER_ALIGNED| NPY_ITER_BUFFERED| NPY_ITER_ZEROSIZE_OK| NPY_ITER_DONT_NEGATE_STRIDES| NPY_ITER_MULTI_INDEX, NPY_KEEPORDER, NPY_SAME_KIND_CASTING, dtype); if (iter == NULL) { goto fail; } /* * Create the return array with a layout compatible with the indices * and with a dimension added to the end for the multi-index */ ret_ndim = PyArray_NDIM(indices) + 1; if (NpyIter_GetShape(iter, ret_dims) != NPY_SUCCEED) { goto fail; } ret_dims[ret_ndim-1] = dimensions.len; if (NpyIter_CreateCompatibleStrides(iter, dimensions.len*sizeof(npy_intp), ret_strides) != NPY_SUCCEED) { goto fail; } ret_strides[ret_ndim-1] = sizeof(npy_intp); /* Remove the multi-index and inner loop */ if (NpyIter_RemoveMultiIndex(iter) != NPY_SUCCEED) { goto fail; } if (NpyIter_EnableExternalLoop(iter) != NPY_SUCCEED) { goto fail; } ret_arr = (PyArrayObject *)PyArray_NewFromDescr(&PyArray_Type, dtype, ret_ndim, ret_dims, ret_strides, NULL, 0, NULL); dtype = NULL; if (ret_arr == NULL) { goto fail; } if (order == NPY_CORDER) { if (NpyIter_GetIterSize(iter) != 0) { NpyIter_IterNextFunc *iternext; char **dataptr; npy_intp *strides; npy_intp *countptr, count; npy_intp *coordsptr = (npy_intp *)PyArray_DATA(ret_arr); iternext = NpyIter_GetIterNext(iter, NULL); if (iternext == NULL) { goto fail; } dataptr = NpyIter_GetDataPtrArray(iter); strides = NpyIter_GetInnerStrideArray(iter); countptr = NpyIter_GetInnerLoopSizePtr(iter); do { count = *countptr; if (unravel_index_loop_corder(dimensions.len, dimensions.ptr, unravel_size, count, *dataptr, *strides, coordsptr) != NPY_SUCCEED) { goto fail; } coordsptr += count*dimensions.len; } while(iternext(iter)); } } else if (order == NPY_FORTRANORDER) { if (NpyIter_GetIterSize(iter) != 0) { NpyIter_IterNextFunc *iternext; char **dataptr; npy_intp *strides; npy_intp *countptr, count; npy_intp *coordsptr = (npy_intp *)PyArray_DATA(ret_arr); iternext = NpyIter_GetIterNext(iter, NULL); if (iternext == NULL) { goto fail; } dataptr = NpyIter_GetDataPtrArray(iter); strides = NpyIter_GetInnerStrideArray(iter); countptr = NpyIter_GetInnerLoopSizePtr(iter); do { count = *countptr; if (unravel_index_loop_forder(dimensions.len, dimensions.ptr, unravel_size, count, *dataptr, *strides, coordsptr) != NPY_SUCCEED) { goto fail; } coordsptr += count*dimensions.len; } while(iternext(iter)); } } else { PyErr_SetString(PyExc_ValueError, "only 'C' or 'F' order is permitted"); goto fail; } /* Now make a tuple of views, one per index */ ret_tuple = PyTuple_New(dimensions.len); if (ret_tuple == NULL) { goto fail; } for (i = 0; i < dimensions.len; ++i) { PyArrayObject *view; view = (PyArrayObject *)PyArray_New(&PyArray_Type, ret_ndim-1, ret_dims, NPY_INTP, ret_strides, PyArray_BYTES(ret_arr) + i*sizeof(npy_intp), 0, 0, NULL); if (view == NULL) { goto fail; } Py_INCREF(ret_arr); if (PyArray_SetBaseObject(view, (PyObject *)ret_arr) < 0) { Py_DECREF(view); goto fail; } PyTuple_SET_ITEM(ret_tuple, i, PyArray_Return(view)); } Py_DECREF(ret_arr); Py_XDECREF(indices); PyDimMem_FREE(dimensions.ptr); NpyIter_Deallocate(iter); return ret_tuple; fail: Py_XDECREF(ret_tuple); Py_XDECREF(ret_arr); Py_XDECREF(dtype); Py_XDECREF(indices); PyDimMem_FREE(dimensions.ptr); NpyIter_Deallocate(iter); return NULL; } static PyTypeObject *PyMemberDescr_TypePtr = NULL; static PyTypeObject *PyGetSetDescr_TypePtr = NULL; static PyTypeObject *PyMethodDescr_TypePtr = NULL; /* Can only be called if doc is currently NULL */ static PyObject * arr_add_docstring(PyObject *NPY_UNUSED(dummy), PyObject *args) { PyObject *obj; PyObject *str; char *docstr; static char *msg = "already has a docstring"; /* Don't add docstrings */ if (Py_OptimizeFlag > 1) { Py_INCREF(Py_None); return Py_None; } #if defined(NPY_PY3K) if (!PyArg_ParseTuple(args, "OO!", &obj, &PyUnicode_Type, &str)) { return NULL; } docstr = PyBytes_AS_STRING(PyUnicode_AsUTF8String(str)); #else if (!PyArg_ParseTuple(args, "OO!", &obj, &PyString_Type, &str)) { return NULL; } docstr = PyString_AS_STRING(str); #endif #define _TESTDOC1(typebase) (Py_TYPE(obj) == &Py##typebase##_Type) #define _TESTDOC2(typebase) (Py_TYPE(obj) == Py##typebase##_TypePtr) #define _ADDDOC(typebase, doc, name) do { \ Py##typebase##Object *new = (Py##typebase##Object *)obj; \ if (!(doc)) { \ doc = docstr; \ } \ else { \ PyErr_Format(PyExc_RuntimeError, "%s method %s", name, msg); \ return NULL; \ } \ } while (0) if (_TESTDOC1(CFunction)) { _ADDDOC(CFunction, new->m_ml->ml_doc, new->m_ml->ml_name); } else if (_TESTDOC1(Type)) { _ADDDOC(Type, new->tp_doc, new->tp_name); } else if (_TESTDOC2(MemberDescr)) { _ADDDOC(MemberDescr, new->d_member->doc, new->d_member->name); } else if (_TESTDOC2(GetSetDescr)) { _ADDDOC(GetSetDescr, new->d_getset->doc, new->d_getset->name); } else if (_TESTDOC2(MethodDescr)) { _ADDDOC(MethodDescr, new->d_method->ml_doc, new->d_method->ml_name); } else { PyObject *doc_attr; doc_attr = PyObject_GetAttrString(obj, "__doc__"); if (doc_attr != NULL && doc_attr != Py_None) { PyErr_Format(PyExc_RuntimeError, "object %s", msg); return NULL; } Py_XDECREF(doc_attr); if (PyObject_SetAttrString(obj, "__doc__", str) < 0) { PyErr_SetString(PyExc_TypeError, "Cannot set a docstring for that object"); return NULL; } Py_INCREF(Py_None); return Py_None; } #undef _TESTDOC1 #undef _TESTDOC2 #undef _ADDDOC Py_INCREF(str); Py_INCREF(Py_None); return Py_None; } /* docstring in numpy.add_newdocs.py */ static PyObject * add_newdoc_ufunc(PyObject *NPY_UNUSED(dummy), PyObject *args) { PyUFuncObject *ufunc; PyObject *str; char *docstr, *newdocstr; #if defined(NPY_PY3K) if (!PyArg_ParseTuple(args, "O!O!", &PyUFunc_Type, &ufunc, &PyUnicode_Type, &str)) { return NULL; } docstr = PyBytes_AS_STRING(PyUnicode_AsUTF8String(str)); #else if (!PyArg_ParseTuple(args, "O!O!", &PyUFunc_Type, &ufunc, &PyString_Type, &str)) { return NULL; } docstr = PyString_AS_STRING(str); #endif if (NULL != ufunc->doc) { PyErr_SetString(PyExc_ValueError, "Cannot change docstring of ufunc with non-NULL docstring"); return NULL; } /* * This introduces a memory leak, as the memory allocated for the doc * will not be freed even if the ufunc itself is deleted. In practice * this should not be a problem since the user would have to * repeatedly create, document, and throw away ufuncs. */ newdocstr = malloc(strlen(docstr) + 1); strcpy(newdocstr, docstr); ufunc->doc = newdocstr; Py_INCREF(Py_None); return Py_None; } /* * This function packs boolean values in the input array into the bits of a * byte array. Truth values are determined as usual: 0 is false, everything * else is true. */ static NPY_INLINE void pack_inner(const char *inptr, npy_intp element_size, /* in bytes */ npy_intp n_in, npy_intp in_stride, char *outptr, npy_intp n_out, npy_intp out_stride) { /* * Loop through the elements of inptr. * Determine whether or not it is nonzero. * Yes: set corresponding bit (and adjust build value) * No: move on * Every 8th value, set the value of build and increment the outptr */ npy_intp index; int remain = n_in % 8; /* uneven bits */ if (remain == 0) { /* assumes n_in > 0 */ remain = 8; } for (index = 0; index < n_out; index++) { char build = 0; int i, maxi; npy_intp j; maxi = (index == n_out - 1) ? remain : 8; for (i = 0; i < maxi; i++) { build <<= 1; for (j = 0; j < element_size; j++) { build |= (inptr[j] != 0); } inptr += in_stride; } if (index == n_out - 1) { build <<= 8 - remain; } *outptr = build; outptr += out_stride; } } static PyObject * pack_bits(PyObject *input, int axis) { PyArrayObject *inp; PyArrayObject *new = NULL; PyArrayObject *out = NULL; npy_intp outdims[NPY_MAXDIMS]; int i; PyArrayIterObject *it, *ot; NPY_BEGIN_THREADS_DEF; inp = (PyArrayObject *)PyArray_FROM_O(input); if (inp == NULL) { return NULL; } if (!PyArray_ISBOOL(inp) && !PyArray_ISINTEGER(inp)) { PyErr_SetString(PyExc_TypeError, "Expected an input array of integer or boolean data type"); goto fail; } new = (PyArrayObject *)PyArray_CheckAxis(inp, &axis, 0); Py_DECREF(inp); if (new == NULL) { return NULL; } /* Handle empty array separately */ if (PyArray_SIZE(new) == 0) { return PyArray_Copy(new); } if (PyArray_NDIM(new) == 0) { char *optr, *iptr; out = (PyArrayObject *)PyArray_New(Py_TYPE(new), 0, NULL, NPY_UBYTE, NULL, NULL, 0, 0, NULL); if (out == NULL) { goto fail; } optr = PyArray_DATA(out); iptr = PyArray_DATA(new); *optr = 0; for (i = 0; i < PyArray_ITEMSIZE(new); i++) { if (*iptr != 0) { *optr = 1; break; } iptr++; } goto finish; } /* Setup output shape */ for (i = 0; i < PyArray_NDIM(new); i++) { outdims[i] = PyArray_DIM(new, i); } /* * Divide axis dimension by 8 * 8 -> 1, 9 -> 2, 16 -> 2, 17 -> 3 etc.. */ outdims[axis] = ((outdims[axis] - 1) >> 3) + 1; /* Create output array */ out = (PyArrayObject *)PyArray_New(Py_TYPE(new), PyArray_NDIM(new), outdims, NPY_UBYTE, NULL, NULL, 0, PyArray_ISFORTRAN(new), NULL); if (out == NULL) { goto fail; } /* Setup iterators to iterate over all but given axis */ it = (PyArrayIterObject *)PyArray_IterAllButAxis((PyObject *)new, &axis); ot = (PyArrayIterObject *)PyArray_IterAllButAxis((PyObject *)out, &axis); if (it == NULL || ot == NULL) { Py_XDECREF(it); Py_XDECREF(ot); goto fail; } NPY_BEGIN_THREADS_THRESHOLDED(PyArray_DIM(out, axis)); while (PyArray_ITER_NOTDONE(it)) { pack_inner(PyArray_ITER_DATA(it), PyArray_ITEMSIZE(new), PyArray_DIM(new, axis), PyArray_STRIDE(new, axis), PyArray_ITER_DATA(ot), PyArray_DIM(out, axis), PyArray_STRIDE(out, axis)); PyArray_ITER_NEXT(it); PyArray_ITER_NEXT(ot); } NPY_END_THREADS; Py_DECREF(it); Py_DECREF(ot); finish: Py_DECREF(new); return (PyObject *)out; fail: Py_XDECREF(new); Py_XDECREF(out); return NULL; } static PyObject * unpack_bits(PyObject *input, int axis) { PyArrayObject *inp; PyArrayObject *new = NULL; PyArrayObject *out = NULL; npy_intp outdims[NPY_MAXDIMS]; int i; PyArrayIterObject *it, *ot; npy_intp n_in, in_stride, out_stride; NPY_BEGIN_THREADS_DEF; inp = (PyArrayObject *)PyArray_FROM_O(input); if (inp == NULL) { return NULL; } if (PyArray_TYPE(inp) != NPY_UBYTE) { PyErr_SetString(PyExc_TypeError, "Expected an input array of unsigned byte data type"); goto fail; } new = (PyArrayObject *)PyArray_CheckAxis(inp, &axis, 0); Py_DECREF(inp); if (new == NULL) { return NULL; } /* Handle zero-dim array separately */ if (PyArray_SIZE(new) == 0) { return PyArray_Copy(new); } if (PyArray_NDIM(new) == 0) { /* Handle 0-d array by converting it to a 1-d array */ PyArrayObject *temp; PyArray_Dims newdim = {NULL, 1}; npy_intp shape = 1; newdim.ptr = &shape; temp = (PyArrayObject *)PyArray_Newshape(new, &newdim, NPY_CORDER); if (temp == NULL) { goto fail; } Py_DECREF(new); new = temp; } /* Setup output shape */ for (i=0; i>= 1; } inptr += in_stride; } PyArray_ITER_NEXT(it); PyArray_ITER_NEXT(ot); } NPY_END_THREADS; Py_DECREF(it); Py_DECREF(ot); Py_DECREF(new); return (PyObject *)out; fail: Py_XDECREF(new); Py_XDECREF(out); return NULL; } static PyObject * io_pack(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds) { PyObject *obj; int axis = NPY_MAXDIMS; static char *kwlist[] = {"in", "axis", NULL}; if (!PyArg_ParseTupleAndKeywords( args, kwds, "O|O&" , kwlist, &obj, PyArray_AxisConverter, &axis)) { return NULL; } return pack_bits(obj, axis); } static PyObject * io_unpack(PyObject *NPY_UNUSED(self), PyObject *args, PyObject *kwds) { PyObject *obj; int axis = NPY_MAXDIMS; static char *kwlist[] = {"in", "axis", NULL}; if (!PyArg_ParseTupleAndKeywords( args, kwds, "O|O&" , kwlist, &obj, PyArray_AxisConverter, &axis)) { return NULL; } return unpack_bits(obj, axis); } /* The docstrings for many of these methods are in add_newdocs.py. */ static struct PyMethodDef methods[] = { {"_insert", (PyCFunction)arr_insert, METH_VARARGS | METH_KEYWORDS, arr_insert__doc__}, {"bincount", (PyCFunction)arr_bincount, METH_VARARGS | METH_KEYWORDS, NULL}, {"digitize", (PyCFunction)arr_digitize, METH_VARARGS | METH_KEYWORDS, NULL}, {"interp", (PyCFunction)arr_interp, METH_VARARGS | METH_KEYWORDS, NULL}, {"ravel_multi_index", (PyCFunction)arr_ravel_multi_index, METH_VARARGS | METH_KEYWORDS, NULL}, {"unravel_index", (PyCFunction)arr_unravel_index, METH_VARARGS | METH_KEYWORDS, NULL}, {"add_docstring", (PyCFunction)arr_add_docstring, METH_VARARGS, NULL}, {"add_newdoc_ufunc", (PyCFunction)add_newdoc_ufunc, METH_VARARGS, NULL}, {"packbits", (PyCFunction)io_pack, METH_VARARGS | METH_KEYWORDS, NULL}, {"unpackbits", (PyCFunction)io_unpack, METH_VARARGS | METH_KEYWORDS, NULL}, {NULL, NULL, 0, NULL} /* sentinel */ }; static void define_types(void) { PyObject *tp_dict; PyObject *myobj; tp_dict = PyArrayDescr_Type.tp_dict; /* Get "subdescr" */ myobj = PyDict_GetItemString(tp_dict, "fields"); if (myobj == NULL) { return; } PyGetSetDescr_TypePtr = Py_TYPE(myobj); myobj = PyDict_GetItemString(tp_dict, "alignment"); if (myobj == NULL) { return; } PyMemberDescr_TypePtr = Py_TYPE(myobj); myobj = PyDict_GetItemString(tp_dict, "newbyteorder"); if (myobj == NULL) { return; } PyMethodDescr_TypePtr = Py_TYPE(myobj); return; } #if defined(NPY_PY3K) static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "_compiled_base", NULL, -1, methods, NULL, NULL, NULL, NULL }; #endif #if defined(NPY_PY3K) #define RETVAL m PyMODINIT_FUNC PyInit__compiled_base(void) #else #define RETVAL PyMODINIT_FUNC init_compiled_base(void) #endif { PyObject *m, *d; #if defined(NPY_PY3K) m = PyModule_Create(&moduledef); #else m = Py_InitModule("_compiled_base", methods); #endif if (!m) { return RETVAL; } /* Import the array objects */ import_array(); import_umath(); /* Add some symbolic constants to the module */ d = PyModule_GetDict(m); /* * PyExc_Exception should catch all the standard errors that are * now raised instead of the string exception "numpy.lib.error". * This is for backward compatibility with existing code. */ PyDict_SetItemString(d, "error", PyExc_Exception); /* define PyGetSetDescr_Type and PyMemberDescr_Type */ define_types(); return RETVAL; }