from __future__ import division, absolute_import, print_function from numpy.testing import * import numpy as np from numpy import ( array, ones, r_, mgrid, unravel_index, zeros, where, ndenumerate, fill_diagonal, diag_indices, diag_indices_from, s_, index_exp, ndindex ) class TestRavelUnravelIndex(TestCase): def test_basic(self): assert_equal(np.unravel_index(2,(2,2)), (1,0)) assert_equal(np.ravel_multi_index((1,0),(2,2)), 2) assert_equal(np.unravel_index(254,(17,94)), (2,66)) assert_equal(np.ravel_multi_index((2,66),(17,94)), 254) assert_raises(ValueError, np.unravel_index, -1, (2,2)) assert_raises(TypeError, np.unravel_index, 0.5, (2,2)) assert_raises(ValueError, np.unravel_index, 4, (2,2)) assert_raises(ValueError, np.ravel_multi_index, (-3,1), (2,2)) assert_raises(ValueError, np.ravel_multi_index, (2,1), (2,2)) assert_raises(ValueError, np.ravel_multi_index, (0,-3), (2,2)) assert_raises(ValueError, np.ravel_multi_index, (0,2), (2,2)) assert_raises(TypeError, np.ravel_multi_index, (0.1,0.), (2,2)) assert_equal(np.unravel_index((2*3 + 1)*6 + 4, (4,3,6)), [2,1,4]) assert_equal(np.ravel_multi_index([2,1,4], (4,3,6)), (2*3 + 1)*6 + 4) arr = np.array([[3,6,6],[4,5,1]]) assert_equal(np.ravel_multi_index(arr, (7,6)), [22,41,37]) assert_equal(np.ravel_multi_index(arr, (7,6), order='F'), [31,41,13]) assert_equal(np.ravel_multi_index(arr, (4,6), mode='clip'), [22,23,19]) assert_equal(np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')), [12,13,13]) assert_equal(np.ravel_multi_index((3,1,4,1), (6,7,8,9)), 1621) assert_equal(np.unravel_index(np.array([22, 41, 37]), (7,6)), [[3, 6, 6],[4, 5, 1]]) assert_equal(np.unravel_index(np.array([31, 41, 13]), (7,6), order='F'), [[3, 6, 6], [4, 5, 1]]) assert_equal(np.unravel_index(1621, (6,7,8,9)), [3,1,4,1]) def test_dtypes(self): # Test with different data types for dtype in [np.int16, np.uint16, np.int32, np.uint32, np.int64, np.uint64]: coords = np.array([[1,0,1,2,3,4],[1,6,1,3,2,0]], dtype=dtype) shape = (5,8) uncoords = 8*coords[0]+coords[1] assert_equal(np.ravel_multi_index(coords, shape), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape)) uncoords = coords[0]+5*coords[1] assert_equal(np.ravel_multi_index(coords, shape, order='F'), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) coords = np.array([[1,0,1,2,3,4],[1,6,1,3,2,0],[1,3,1,0,9,5]], dtype=dtype) shape = (5,8,10) uncoords = 10*(8*coords[0]+coords[1])+coords[2] assert_equal(np.ravel_multi_index(coords, shape), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape)) uncoords = coords[0]+5*(coords[1]+8*coords[2]) assert_equal(np.ravel_multi_index(coords, shape, order='F'), uncoords) assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) def test_clipmodes(self): # Test clipmodes assert_equal(np.ravel_multi_index([5,1,-1,2], (4,3,7,12), mode='wrap'), np.ravel_multi_index([1,1,6,2], (4,3,7,12))) assert_equal(np.ravel_multi_index([5,1,-1,2], (4,3,7,12), mode=('wrap','raise','clip','raise')), np.ravel_multi_index([1,1,0,2], (4,3,7,12))) assert_raises(ValueError, np.ravel_multi_index, [5,1,-1,2], (4,3,7,12)) class TestGrid(TestCase): def test_basic(self): a = mgrid[-1:1:10j] b = mgrid[-1:1:0.1] assert_(a.shape == (10,)) assert_(b.shape == (20,)) assert_(a[0] == -1) assert_almost_equal(a[-1],1) assert_(b[0] == -1) assert_almost_equal(b[1]-b[0],0.1,11) assert_almost_equal(b[-1],b[0]+19*0.1,11) assert_almost_equal(a[1]-a[0],2.0/9.0,11) def test_linspace_equivalence(self): y,st = np.linspace(2,10,retstep=1) assert_almost_equal(st,8/49.0) assert_array_almost_equal(y,mgrid[2:10:50j],13) def test_nd(self): c = mgrid[-1:1:10j,-2:2:10j] d = mgrid[-1:1:0.1,-2:2:0.2] assert_(c.shape == (2,10,10)) assert_(d.shape == (2,20,20)) assert_array_equal(c[0][0,:],-ones(10,'d')) assert_array_equal(c[1][:,0],-2*ones(10,'d')) assert_array_almost_equal(c[0][-1,:],ones(10,'d'),11) assert_array_almost_equal(c[1][:,-1],2*ones(10,'d'),11) assert_array_almost_equal(d[0,1,:]-d[0,0,:], 0.1*ones(20,'d'),11) assert_array_almost_equal(d[1,:,1]-d[1,:,0], 0.2*ones(20,'d'),11) class TestConcatenator(TestCase): def test_1d(self): assert_array_equal(r_[1,2,3,4,5,6],array([1,2,3,4,5,6])) b = ones(5) c = r_[b,0,0,b] assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1]) def test_mixed_type(self): g = r_[10.1, 1:10] assert_(g.dtype == 'f8') def test_more_mixed_type(self): g = r_[-10.1, array([1]), array([2,3,4]), 10.0] assert_(g.dtype == 'f8') def test_2d(self): b = rand(5,5) c = rand(5,5) d = r_['1',b,c] # append columns assert_(d.shape == (5,10)) assert_array_equal(d[:,:5],b) assert_array_equal(d[:,5:],c) d = r_[b,c] assert_(d.shape == (10,5)) assert_array_equal(d[:5,:],b) assert_array_equal(d[5:,:],c) class TestNdenumerate(TestCase): def test_basic(self): a = array([[1,2], [3,4]]) assert_equal(list(ndenumerate(a)), [((0,0), 1), ((0,1), 2), ((1,0), 3), ((1,1), 4)]) class TestIndexExpression(TestCase): def test_regression_1(self): # ticket #1196 a = np.arange(2) assert_equal(a[:-1], a[s_[:-1]]) assert_equal(a[:-1], a[index_exp[:-1]]) def test_simple_1(self): a = np.random.rand(4,5,6) assert_equal(a[:,:3,[1,2]], a[index_exp[:,:3,[1,2]]]) assert_equal(a[:,:3,[1,2]], a[s_[:,:3,[1,2]]]) def test_c_(): a = np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])] assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]]) def test_fill_diagonal(): a = zeros((3, 3),int) fill_diagonal(a, 5) yield (assert_array_equal, a, array([[5, 0, 0], [0, 5, 0], [0, 0, 5]])) #Test tall matrix a = zeros((10, 3),int) fill_diagonal(a, 5) yield (assert_array_equal, a, array([[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]])) #Test tall matrix wrap a = zeros((10, 3),int) fill_diagonal(a, 5, True) yield (assert_array_equal, a, array([[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0], [5, 0, 0], [0, 5, 0]])) #Test wide matrix a = zeros((3, 10),int) fill_diagonal(a, 5) yield (assert_array_equal, a, array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 5, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]])) # The same function can operate on a 4-d array: a = zeros((3, 3, 3, 3), int) fill_diagonal(a, 4) i = array([0, 1, 2]) yield (assert_equal, where(a != 0), (i, i, i, i)) def test_diag_indices(): di = diag_indices(4) a = array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) a[di] = 100 yield (assert_array_equal, a, array([[100, 2, 3, 4], [ 5, 100, 7, 8], [ 9, 10, 100, 12], [ 13, 14, 15, 100]])) # Now, we create indices to manipulate a 3-d array: d3 = diag_indices(2, 3) # And use it to set the diagonal of a zeros array to 1: a = zeros((2, 2, 2),int) a[d3] = 1 yield (assert_array_equal, a, array([[[1, 0], [0, 0]], [[0, 0], [0, 1]]]) ) def test_diag_indices_from(): x = np.random.random((4, 4)) r, c = diag_indices_from(x) assert_array_equal(r, np.arange(4)) assert_array_equal(c, np.arange(4)) def test_ndindex(): x = list(np.ndindex(1, 2, 3)) expected = [ix for ix, e in np.ndenumerate(np.zeros((1, 2, 3)))] assert_array_equal(x, expected) x = list(np.ndindex((1, 2, 3))) assert_array_equal(x, expected) # Test use of scalars and tuples x = list(np.ndindex((3,))) assert_array_equal(x, list(np.ndindex(3))) # Make sure size argument is optional x = list(np.ndindex()) assert_equal(x, [()]) x = list(np.ndindex(())) assert_equal(x, [()]) if __name__ == "__main__": run_module_suite()