""" Module of functions that are like ufuncs in acting on arrays and optionally storing results in an output array. """ __all__ = ['fix', 'isneginf', 'isposinf', 'log2'] import numpy.core.numeric as nx def fix(x, y=None): """ Round x to nearest integer towards zero. """ x = nx.asanyarray(x) if y is None: y = nx.zeros_like(x) y1 = nx.floor(x) y2 = nx.ceil(x) y[...] = nx.where(x >= 0, y1, y2) return y def isposinf(x, y=None): """ Return True where x is +infinity, and False otherwise. Parameters ---------- x : array_like The input array. y : array_like A boolean array with the same shape as `x` to store the result. Returns ------- y : ndarray A boolean array where y[i] = True only if x[i] = +Inf. See Also -------- isneginf, isfinite Examples -------- >>> np.isposinf([-np.inf, 0., np.inf]) array([ False, False, True], dtype=bool) """ if y is None: x = nx.asarray(x) y = nx.empty(x.shape, dtype=nx.bool_) nx.logical_and(nx.isinf(x), ~nx.signbit(x), y) return y def isneginf(x, y=None): """ Return True where x is -infinity, and False otherwise. Parameters ---------- x : array_like The input array. y : array_like A boolean array with the same shape as `x` to store the result. Returns ------- y : ndarray A boolean array where y[i] = True only if x[i] = -Inf. See Also -------- isposinf, isfinite Examples -------- >>> np.isneginf([-np.inf, 0., np.inf]) array([ True, False, False], dtype=bool) """ if y is None: x = nx.asarray(x) y = nx.empty(x.shape, dtype=nx.bool_) nx.logical_and(nx.isinf(x), nx.signbit(x), y) return y _log2 = nx.log(2) def log2(x, y=None): """ Return the base 2 logarithm. Parameters ---------- x : array_like Input array. y : array_like Optional output array with the same shape as `x`. Returns ------- y : {ndarray, scalar} The logarithm to the base 2 of `x` elementwise. NaNs are returned where `x` is negative. See Also -------- log, log1p, log10 Examples -------- >>> np.log2([-1,2,4]) array([ NaN, 1., 2.]) """ x = nx.asanyarray(x) if y is None: y = nx.log(x) else: nx.log(x, y) y /= _log2 return y