"""Lite version of scipy.linalg. """ # This module is a lite version of the linalg.py module in SciPy which contains # high-level Python interface to the LAPACK library. The lite version # only accesses the following LAPACK functions: dgesv, zgesv, dgeev, # zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, dpotrf. __all__ = ['solve', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'det', 'svd', 'eig', 'eigh','lstsq', 'norm', 'LinAlgError' ] from numpy.core import * from numpy.lib import * import lapack_lite fortran_int = int32 # Error object class LinAlgError(Exception): pass def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_wrap__", new.__array_wrap__) return new, wrap def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) maxtype = (0, double) for a in arrays: if issubclass(a.dtype.type, inexact): if a.dtype.type in (single, double): t = (0, double) elif a.dtype.type in (csingle, cdouble): t = (1, cdouble) else: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: t = (0, double) maxtype = max(maxtype, t) return maxtype[1] def _realType(t): return {double : double, cdouble : double} def _castCopyAndTranspose(type, *arrays): if len(arrays) == 1: return transpose(arrays[0]).astype(type) else: return [transpose(a).astype(type) for a in arrays] # _fastCopyAndTranpose is an optimized version of _castCopyAndTranspose. # It assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.char == type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if len(a.shape) != 2: raise LinAlgError, 'Array must be two-dimensional' def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError, 'Array must be square' # Linear equations def solve(a, b): """Return the solution of a*x = b """ one_eq = len(b.shape) == 1 if one_eq: b = b[:, newaxis] _assertRank2(a, b) _assertSquareness(a) n_eq = a.shape[0] n_rhs = b.shape[1] if n_eq != b.shape[0]: raise LinAlgError, 'Incompatible dimensions' t =_commonType(a, b) # lapack_routine = _findLapackRoutine('gesv', t) if issubclass(t, complexfloating): lapack_routine = lapack_lite.zgesv else: lapack_routine = lapack_lite.dgesv a, b = _fastCopyAndTranspose(t, a, b) pivots = zeros(n_eq, fortran_int) results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0) if results['info'] > 0: raise LinAlgError, 'Singular matrix' if one_eq: return ravel(b) # I see no need to copy here else: return transpose(b) # no need to copy # Matrix inversion def inv(a): a, wrap = _makearray(a) return wrap(solve(a, identity(a.shape[0]))) # Cholesky decomposition def cholesky(a): _assertRank2(a) _assertSquareness(a) t =_commonType(a) a = _castCopyAndTranspose(t, a) m = a.shape[0] n = a.shape[1] if issubclass(t, complexfloating): lapack_routine = lapack_lite.zpotrf else: lapack_routine = lapack_lite.dpotrf results = lapack_routine('L', n, a, m, 0) if results['info'] > 0: raise LinAlgError, 'Matrix is not positive definite - Cholesky decomposition cannot be computed' return transpose(triu(a,k=0)).copy() # Eigenvalues def eigvals(a): _assertRank2(a) _assertSquareness(a) t =_commonType(a) real_t = _realType(t) a = _fastCopyAndTranspose(t, a) n = a.shape[0] dummy = zeros((1,), t) if issubclass(t, complexfloating): lapack_routine = lapack_lite.zgeev w = zeros((n,), t) rwork = zeros((n,),real_t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine('N', 'N', n, a, n, w, dummy, 1, dummy, 1, work, -1, rwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine('N', 'N', n, a, n, w, dummy, 1, dummy, 1, work, lwork, rwork, 0) else: lapack_routine = lapack_lite.dgeev wr = zeros((n,), t) wi = zeros((n,), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine('N', 'N', n, a, n, wr, wi, dummy, 1, dummy, 1, work, -1, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine('N', 'N', n, a, n, wr, wi, dummy, 1, dummy, 1, work, lwork, 0) if logical_and.reduce(equal(wi, 0.)): w = wr else: w = wr+1j*wi if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w def eigvalsh(a, UPLO='L'): _assertRank2(a) _assertSquareness(a) t = _commonType(a) real_t = _realType(t) a = _castCopyAndTranspose(t, a) n = a.shape[0] liwork = 5*n+3 iwork = zeros((liwork,), fortran_int) if issubclass(t, complexfloating): lapack_routine = lapack_lite.zheevd w = zeros((n,), real_t) lwork = 1 work = zeros((lwork,), t) lrwork = 1 rwork = zeros((lrwork,),real_t) results = lapack_routine('N', UPLO, n, a, n,w, work, -1, rwork, -1, iwork, liwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) lrwork = int(rwork[0]) rwork = zeros((lrwork,),real_t) results = lapack_routine('N', UPLO, n, a, n,w, work, lwork, rwork, lrwork, iwork, liwork, 0) else: lapack_routine = lapack_lite.dsyevd w = zeros((n,), t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine('N', UPLO, n, a, n,w, work, -1, iwork, liwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine('N', UPLO, n, a, n,w, work, lwork, iwork, liwork, 0) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w def _convertarray(a): if issubclass(a.dtype.type, complexfloating): if a.dtype.char == 'D': a = _fastCT(a) else: a = _fastCT(a.astype('D')) else: if a.dtype.char == 'd': a = _fastCT(a) else: a = _fastCT(a.astype('d')) return a, a.dtype.char # Eigenvectors def eig(a): """eig(a) returns u,v where u is the eigenvalues and v is a matrix of eigenvectors with vector v[:,i] corresponds to eigenvalue u[i]. Satisfies the equation dot(a, v[:,i]) = u[i]*v[:,i] """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) a,t = _convertarray(a) # convert to float_ or complex_ type real_t = 'd' n = a.shape[0] dummy = zeros((1,), t) if t == 'D': # Complex routines take different arguments lapack_routine = lapack_lite.zgeev w = zeros((n,), t) v = zeros((n,n), t) lwork = 1 work = zeros((lwork,),t) rwork = zeros((2*n,),real_t) results = lapack_routine('N', 'V', n, a, n, w, dummy, 1, v, n, work, -1, rwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,),t) results = lapack_routine('N', 'V', n, a, n, w, dummy, 1, v, n, work, lwork, rwork, 0) else: lapack_routine = lapack_lite.dgeev wr = zeros((n,), t) wi = zeros((n,), t) vr = zeros((n,n), t) lwork = 1 work = zeros((lwork,),t) results = lapack_routine('N', 'V', n, a, n, wr, wi, dummy, 1, vr, n, work, -1, 0) lwork = int(work[0]) work = zeros((lwork,),t) results = lapack_routine('N', 'V', n, a, n, wr, wi, dummy, 1, vr, n, work, lwork, 0) if logical_and.reduce(equal(wi, 0.)): w = wr v = vr else: w = wr+1j*wi v = array(vr,Complex) ind = nonzero( equal( equal(wi,0.0) # true for real e-vals ,0) # true for complex e-vals ) # indices of complex e-vals for i in range(len(ind)/2): v[ind[2*i]] = vr[ind[2*i]] + 1j*vr[ind[2*i+1]] v[ind[2*i+1]] = vr[ind[2*i]] - 1j*vr[ind[2*i+1]] if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w,wrap(v.transpose()) def eigh(a, UPLO='L'): """Compute eigenvalues for a Hermitian-symmetric matrix. """ a, wrap = _makearray(a) _assertRank2(a) _assertSquareness(a) t = _commonType(a) real_t = _realType(t) a = _castCopyAndTranspose(t, a) n = a.shape[0] liwork = 5*n+3 iwork = zeros((liwork,), fortran_int) if issubclass(t, complexfloating): lapack_routine = lapack_lite.zheevd w = zeros((n,), real_t) lwork = 1 work = zeros((lwork,), t) lrwork = 1 rwork = zeros((lrwork,),real_t) results = lapack_routine('V', UPLO, n, a, n,w, work, -1, rwork, -1, iwork, liwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) lrwork = int(rwork[0]) rwork = zeros((lrwork,),real_t) results = lapack_routine('V', UPLO, n, a, n,w, work, lwork, rwork, lrwork, iwork, liwork, 0) else: lapack_routine = lapack_lite.dsyevd w = zeros((n,), t) lwork = 1 work = zeros((lwork,),t) results = lapack_routine('V', UPLO, n, a, n,w, work, -1, iwork, liwork, 0) lwork = int(work[0]) work = zeros((lwork,),t) results = lapack_routine('V', UPLO, n, a, n,w, work, lwork, iwork, liwork, 0) if results['info'] > 0: raise LinAlgError, 'Eigenvalues did not converge' return w,wrap(a.transpose()) # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): """Singular Value Decomposition. u,s,vh = svd(a) If a is an M x N array, then the svd produces a factoring of the array into two unitary (orthogonal) 2-d arrays u (MxM) and vh (NxN) and a min(M,N)-length array of singular values such that a == dot(u,dot(S,vh)) where S is an MxN array of zeros whose main diagonal is s. if compute_uv == 0, then return only the singular values if full_matrices == 0, then only part of either u or vh is returned so that it is MxN """ a, wrap = _makearray(a) _assertRank2(a) m, n = a.shape t = _commonType(a) real_t = _realType(t) a = _fastCopyAndTranspose(t, a) s = zeros((min(n,m),), real_t) if compute_uv: if full_matrices: nu = m nvt = n option = 'A' else: nu = min(n,m) nvt = min(n,m) option = 'S' u = zeros((nu, m), t) vt = zeros((n, nvt), t) else: option = 'N' nu = 1 nvt = 1 u = empty((1,1),t) vt = empty((1,1),t) iwork = zeros((8*min(m,n),), fortran_int) if issubclass(t, complexfloating): lapack_routine = lapack_lite.zgesdd rwork = zeros((5*min(m,n)*min(m,n) + 5*min(m,n),), real_t) lwork = 1 work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgesdd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, -1, iwork, 0) lwork = int(work[0]) if option == 'N' and lwork==1: # there seems to be a bug in dgesdd of lapack # (NNemec, 060310) # returning the wrong lwork size for option == 'N' results = lapack_routine('A', m, n, a, m, s, u, m, vt, n, work, -1, iwork, 0) lwork = int(work[0]) assert lwork > 1 work = zeros((lwork,), t) results = lapack_routine(option, m, n, a, m, s, u, m, vt, nvt, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError, 'SVD did not converge' if compute_uv: return wrap(transpose(u)), s, \ wrap(transpose(vt)) # why copy here? else: return s # Generalized inverse def pinv(a, rcond = 1.e-10): """Return the (Moore-Penrose) pseudo-inverse of a 2-d array This method computes the generalized inverse using the singular-value decomposition and all singular values larger than rcond of the largest. """ a, wrap = _makearray(a) if a.dtype.char in typecodes['Complex']: a = conjugate(a) u, s, vt = svd(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*maximum.reduce(s) for i in range(min(n,m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0.; return wrap(dot(transpose(vt), multiply(s[:, newaxis],transpose(u)))) # Determinant def det(a): "The determinant of the 2-d array a" a = asarray(a) _assertRank2(a) _assertSquareness(a) t =_commonType(a) a = _fastCopyAndTranspose(t, a) n = a.shape[0] if issubclass(t, complexfloating): lapack_routine = lapack_lite.zgetrf else: lapack_routine = lapack_lite.dgetrf pivots = zeros((n,), fortran_int) results = lapack_routine(n, n, a, n, pivots, 0) sign = add.reduce(not_equal(pivots, arange(1, n+1))) % 2 return (1.-2.*sign)*multiply.reduce(diagonal(a),axis=-1) # Linear Least Squares def lstsq(a, b, rcond=1.e-10): """returns x,resids,rank,s where x minimizes 2-norm(|b - Ax|) resids is the sum square residuals rank is the rank of A s is the rank of the singular values of A in descending order If b is a matrix then x is also a matrix with corresponding columns. If the rank of A is less than the number of columns of A or greater than the number of rows, then residuals will be returned as an empty array otherwise resids = sum((b-dot(A,x)**2). Singular values less than s[0]*rcond are treated as zero. """ import math a = asarray(a) b, wrap = _makearray(b) one_eq = len(b.shape) == 1 if one_eq: b = b[:, newaxis] _assertRank2(a, b) m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n,m) if m != b.shape[0]: raise LinAlgError, 'Incompatible dimensions' t = _commonType(a, b) real_t = _realType(t) bstar = zeros((ldb,n_rhs),t) bstar[:b.shape[0],:n_rhs] = b.copy() a,bstar = _castCopyAndTranspose(t, a, bstar) s = zeros((min(m,n),),real_t) nlvl = max( 0, int( math.log( float(min( m,n ))/2. ) ) + 1 ) iwork = zeros((3*min(m,n)*nlvl+11*min(m,n),), fortran_int) if issubclass(t, complexfloating): lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = zeros((lwork,), real_t) work = zeros((lwork,),t) results = lapack_routine( m, n, n_rhs, a, m, bstar,ldb , s, rcond, 0,work,-1,rwork,iwork,0 ) lwork = int(abs(work[0])) rwork = zeros((lwork,),real_t) a_real = zeros((m,n),real_t) bstar_real = zeros((ldb,n_rhs,),real_t) results = lapack_lite.dgelsd( m, n, n_rhs, a_real, m, bstar_real,ldb , s, rcond, 0,rwork,-1,iwork,0 ) lrwork = int(rwork[0]) work = zeros((lwork,), t) rwork = zeros((lrwork,), real_t) results = lapack_routine( m, n, n_rhs, a, m, bstar,ldb , s, rcond, 0,work,lwork,rwork,iwork,0 ) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = zeros((lwork,), t) results = lapack_routine( m, n, n_rhs, a, m, bstar,ldb , s, rcond, 0,work,-1,iwork,0 ) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine( m, n, n_rhs, a, m, bstar,ldb , s, rcond, 0,work,lwork,iwork,0 ) if results['info'] > 0: raise LinAlgError, 'SVD did not converge in Linear Least Squares' resids = array([],t) if one_eq: x = ravel(bstar)[:n].copy() if (results['rank']==n) and (m>n): resids = array([sum((ravel(bstar)[n:])**2)]) else: x = transpose(bstar)[:n,:].copy() if (results['rank']==n) and (m>n): resids = sum((transpose(bstar)[n:,:])**2).copy() return wrap(x),resids,results['rank'],s[:min(n,m)].copy() def norm(x, ord=None): """ norm(x, ord=None) -> n Matrix or vector norm. Inputs: x -- a rank-1 (vector) or rank-2 (matrix) array ord -- the order of the norm. Comments: For arrays of any rank, if ord is None: calculate the square norm (Euclidean norm for vectors, Frobenius norm for matrices) For vectors ord can be any real number including Inf or -Inf. ord = Inf, computes the maximum of the magnitudes ord = -Inf, computes minimum of the magnitudes ord is finite, computes sum(abs(x)**ord)**(1.0/ord) For matrices ord can only be one of the following values: ord = 2 computes the largest singular value ord = -2 computes the smallest singular value ord = 1 computes the largest column sum of absolute values ord = -1 computes the smallest column sum of absolute values ord = Inf computes the largest row sum of absolute values ord = -Inf computes the smallest row sum of absolute values ord = 'fro' computes the frobenius norm sqrt(sum(diag(X.H * X))) For values ord < 0, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for numerical purposes. """ x = asarray(x) nd = len(x.shape) if ord is None: # check the default case first and handle it immediately return sqrt(add.reduce((x.conj() * x).ravel().real)) if nd == 1: if ord == Inf: return abs(x).max() elif ord == -Inf: return abs(x).min() elif ord == 1: return abs(x).sum() # special case for speedup elif ord == 2: return sqrt(((x.conj()*x).real).sum()) # special case for speedup else: return ((abs(x)**ord).sum())**(1.0/ord) elif nd == 2: if ord == 2: return svd(x,compute_uv=0).max() elif ord == -2: return svd(x,compute_uv=0).min() elif ord == 1: return abs(x).sum(axis=0).max() elif ord == Inf: return abs(x).sum(axis=1).max() elif ord == -1: return abs(x).sum(axis=0).min() elif ord == -Inf: return abs(x).sum(axis=1).min() elif ord in ['fro','f']: return sqrt(add.reduce((x.conj() * x).real.ravel())) else: raise ValueError, "Invalid norm order for matrices." else: raise ValueError, "Improper number of dimensions to norm." if __name__ == '__main__': def test(a, b): print "All numbers printed should be (almost) zero:" x = solve(a, b) check = b - matrixmultiply(a, x) print check a_inv = inv(a) check = matrixmultiply(a, a_inv)-identity(a.shape[0]) print check ev = eigvals(a) evalues, evectors = eig(a) check = ev-evalues print check evectors = transpose(evectors) check = matrixmultiply(a, evectors)-evectors*evalues print check u, s, vt = svd(a,0) check = a - matrixmultiply(u*s, vt) print check a_ginv = pinv(a) check = matrixmultiply(a, a_ginv)-identity(a.shape[0]) print check det = det(a) check = det-multiply.reduce(evalues) print check x, residuals, rank, sv = lstsq(a, b) check = b - matrixmultiply(a, x) print check print rank-a.shape[0] print sv-s a = array([[1.,2.], [3.,4.]]) b = array([2., 1.]) test(a, b) a = a+0j b = b+0j test(a, b)