""" Test functions for linalg module """ from numpy.testing import * set_package_path() from numpy import array, single, double, csingle, cdouble, dot, identity from numpy import multiply, atleast_2d, inf, asarray, matrix from numpy import linalg from linalg import matrix_power restore_path() def ifthen(a, b): return not a or b old_assert_almost_equal = assert_almost_equal def imply(a, b): return not a or b def assert_almost_equal(a, b, **kw): if asarray(a).dtype.type in (single, csingle): decimal = 6 else: decimal = 12 old_assert_almost_equal(a, b, decimal=decimal, **kw) class LinalgTestCase(NumpyTestCase): def check_single(self): a = array([[1.,2.], [3.,4.]], dtype=single) b = array([2., 1.], dtype=single) self.do(a, b) def check_double(self): a = array([[1.,2.], [3.,4.]], dtype=double) b = array([2., 1.], dtype=double) self.do(a, b) def check_csingle(self): a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=csingle) b = array([2.+1j, 1.+2j], dtype=csingle) self.do(a, b) def check_cdouble(self): a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble) b = array([2.+1j, 1.+2j], dtype=cdouble) self.do(a, b) def check_empty(self): a = atleast_2d(array([], dtype = double)) b = atleast_2d(array([], dtype = double)) try: self.do(a, b) raise AssertionError("%s should fail with empty matrices", self.__name__[5:]) except linalg.LinAlgError, e: pass def check_nonarray(self): a = [[1,2], [3,4]] b = [2, 1] self.do(a,b) def check_matrix_b_only(self): """Check that matrix type is preserved.""" a = array([[1.,2.], [3.,4.]]) b = matrix([2., 1.]).T self.do(a, b) def check_matrix_a_and_b(self): """Check that matrix type is preserved.""" a = matrix([[1.,2.], [3.,4.]]) b = matrix([2., 1.]).T self.do(a, b) class TestSolve(LinalgTestCase): def do(self, a, b): x = linalg.solve(a, b) assert_almost_equal(b, dot(a, x)) assert imply(isinstance(b, matrix), isinstance(x, matrix)) class TestInv(LinalgTestCase): def do(self, a, b): a_inv = linalg.inv(a) assert_almost_equal(dot(a, a_inv), identity(asarray(a).shape[0])) assert imply(isinstance(a, matrix), isinstance(a_inv, matrix)) class TestEigvals(LinalgTestCase): def do(self, a, b): ev = linalg.eigvals(a) evalues, evectors = linalg.eig(a) assert_almost_equal(ev, evalues) class TestEig(LinalgTestCase): def do(self, a, b): evalues, evectors = linalg.eig(a) assert_almost_equal(dot(a, evectors), multiply(evectors, evalues)) assert imply(isinstance(a, matrix), isinstance(evectors, matrix)) class TestSVD(LinalgTestCase): def do(self, a, b): u, s, vt = linalg.svd(a, 0) assert_almost_equal(a, dot(multiply(u, s), vt)) assert imply(isinstance(a, matrix), isinstance(u, matrix)) assert imply(isinstance(a, matrix), isinstance(vt, matrix)) class TestCondSVD(LinalgTestCase): def do(self, a, b): c = asarray(a) # a might be a matrix s = linalg.svd(c, compute_uv=False) old_assert_almost_equal(s[0]/s[-1], linalg.cond(a), decimal=5) class TestCond2(LinalgTestCase): def do(self, a, b): c = asarray(a) # a might be a matrix s = linalg.svd(c, compute_uv=False) old_assert_almost_equal(s[0]/s[-1], linalg.cond(a,2), decimal=5) class TestCondInf(NumpyTestCase): def test(self): A = array([[1.,0,0],[0,-2.,0],[0,0,3.]]) assert_almost_equal(linalg.cond(A,inf),3.) class TestPinv(LinalgTestCase): def do(self, a, b): a_ginv = linalg.pinv(a) assert_almost_equal(dot(a, a_ginv), identity(asarray(a).shape[0])) assert imply(isinstance(a, matrix), isinstance(a_ginv, matrix)) class TestDet(LinalgTestCase): def do(self, a, b): d = linalg.det(a) if asarray(a).dtype.type in (single, double): ad = asarray(a).astype(double) else: ad = asarray(a).astype(cdouble) ev = linalg.eigvals(ad) assert_almost_equal(d, multiply.reduce(ev)) class TestLstsq(LinalgTestCase): def do(self, a, b): u, s, vt = linalg.svd(a, 0) x, residuals, rank, sv = linalg.lstsq(a, b) assert_almost_equal(b, dot(a, x)) assert_equal(rank, asarray(a).shape[0]) assert_almost_equal(sv, sv.__array_wrap__(s)) assert imply(isinstance(b, matrix), isinstance(x, matrix)) assert imply(isinstance(b, matrix), isinstance(residuals, matrix)) class TestMatrixPower(ParametricTestCase): R90 = array([[0,1],[-1,0]]) Arb22 = array([[4,-7],[-2,10]]) noninv = array([[1,0],[0,0]]) arbfloat = array([[0.1,3.2],[1.2,0.7]]) large = identity(10) t = large[1,:].copy() large[1,:] = large[0,:] large[0,:] = t def test_large_power(self): assert_equal(matrix_power(self.R90,2L**100+2**10+2**5+1),self.R90) def test_large_power_trailing_zero(self): assert_equal(matrix_power(self.R90,2L**100+2**10+2**5),identity(2)) def testip_zero(self): def tz(M): mz = matrix_power(M,0) assert_equal(mz, identity(M.shape[0])) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: yield tz, M def testip_one(self): def tz(M): mz = matrix_power(M,1) assert_equal(mz, M) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: yield tz, M def testip_two(self): def tz(M): mz = matrix_power(M,2) assert_equal(mz, dot(M,M)) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: yield tz, M def testip_invert(self): def tz(M): mz = matrix_power(M,-1) assert_almost_equal(identity(M.shape[0]), dot(mz,M)) for M in [self.R90, self.Arb22, self.arbfloat, self.large]: yield tz, M def test_invert_noninvertible(self): import numpy.linalg self.assertRaises(numpy.linalg.linalg.LinAlgError, lambda: matrix_power(self.noninv,-1)) class TestBoolPower(NumpyTestCase): def check_square(self): A = array([[True,False],[True,True]]) assert_equal(matrix_power(A,2),A) if __name__ == '__main__': NumpyTest().run()