# pylint: disable-msg=W0611, W0612, W0511 """Tests suite for MaskedArray. Adapted from the original test_ma by Pierre Gerard-Marchant :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu :version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ """ __author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)" __version__ = '1.0' __revision__ = "$Revision: 3473 $" __date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' import numpy as N from numpy.testing import NumpyTest, NumpyTestCase from numpy.testing.utils import build_err_msg import numpy.ma.testutils from numpy.ma.testutils import * import numpy.ma.core from numpy.ma.core import * import numpy.ma.extras from numpy.ma.extras import * class TestAverage(NumpyTestCase): "Several tests of average. Why so many ? Good point..." def check_testAverage1(self): "Test of average." ott = array([0.,1.,2.,3.], mask=[1,0,0,0]) assert_equal(2.0, average(ott,axis=0)) assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.])) result, wts = average(ott, weights=[1.,1.,2.,1.], returned=1) assert_equal(2.0, result) assert(wts == 4.0) ott[:] = masked assert_equal(average(ott,axis=0).mask, [True]) ott = array([0.,1.,2.,3.], mask=[1,0,0,0]) ott = ott.reshape(2,2) ott[:,1] = masked assert_equal(average(ott,axis=0), [2.0, 0.0]) assert_equal(average(ott,axis=1).mask[0], [True]) assert_equal([2.,0.], average(ott, axis=0)) result, wts = average(ott, axis=0, returned=1) assert_equal(wts, [1., 0.]) def check_testAverage2(self): "More tests of average." w1 = [0,1,1,1,1,0] w2 = [[0,1,1,1,1,0],[1,0,0,0,0,1]] x = arange(6, dtype=float_) assert_equal(average(x, axis=0), 2.5) assert_equal(average(x, axis=0, weights=w1), 2.5) y = array([arange(6, dtype=float_), 2.0*arange(6)]) assert_equal(average(y, None), N.add.reduce(N.arange(6))*3./12.) assert_equal(average(y, axis=0), N.arange(6) * 3./2.) assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0]) assert_equal(average(y, None, weights=w2), 20./6.) assert_equal(average(y, axis=0, weights=w2), [0.,1.,2.,3.,4.,10.]) assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0]) m1 = zeros(6) m2 = [0,0,1,1,0,0] m3 = [[0,0,1,1,0,0],[0,1,1,1,1,0]] m4 = ones(6) m5 = [0, 1, 1, 1, 1, 1] assert_equal(average(masked_array(x, m1),axis=0), 2.5) assert_equal(average(masked_array(x, m2),axis=0), 2.5) assert_equal(average(masked_array(x, m4),axis=0).mask, [True]) assert_equal(average(masked_array(x, m5),axis=0), 0.0) assert_equal(count(average(masked_array(x, m4),axis=0)), 0) z = masked_array(y, m3) assert_equal(average(z, None), 20./6.) assert_equal(average(z, axis=0), [0.,1.,99.,99.,4.0, 7.5]) assert_equal(average(z, axis=1), [2.5, 5.0]) assert_equal(average(z,axis=0, weights=w2), [0.,1., 99., 99., 4.0, 10.0]) def check_testAverage3(self): "Yet more tests of average!" a = arange(6) b = arange(6) * 3 r1, w1 = average([[a,b],[b,a]], axis=1, returned=1) assert_equal(shape(r1) , shape(w1)) assert_equal(r1.shape , w1.shape) r2, w2 = average(ones((2,2,3)), axis=0, weights=[3,1], returned=1) assert_equal(shape(w2) , shape(r2)) r2, w2 = average(ones((2,2,3)), returned=1) assert_equal(shape(w2) , shape(r2)) r2, w2 = average(ones((2,2,3)), weights=ones((2,2,3)), returned=1) assert_equal(shape(w2), shape(r2)) a2d = array([[1,2],[0,4]], float) a2dm = masked_array(a2d, [[0,0],[1,0]]) a2da = average(a2d, axis=0) assert_equal(a2da, [0.5, 3.0]) a2dma = average(a2dm, axis=0) assert_equal(a2dma, [1.0, 3.0]) a2dma = average(a2dm, axis=None) assert_equal(a2dma, 7./3.) a2dma = average(a2dm, axis=1) assert_equal(a2dma, [1.5, 4.0]) class TestConcatenator(NumpyTestCase): "Tests for mr_, the equivalent of r_ for masked arrays." def check_1d(self): "Tests mr_ on 1D arrays." assert_array_equal(mr_[1,2,3,4,5,6],array([1,2,3,4,5,6])) b = ones(5) m = [1,0,0,0,0] d = masked_array(b,mask=m) c = mr_[d,0,0,d] assert(isinstance(c,MaskedArray) or isinstance(c,core.MaskedArray)) assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1]) assert_array_equal(c.mask, mr_[m,0,0,m]) def check_2d(self): "Tests mr_ on 2D arrays." a_1 = rand(5,5) a_2 = rand(5,5) m_1 = N.round_(rand(5,5),0) m_2 = N.round_(rand(5,5),0) b_1 = masked_array(a_1,mask=m_1) b_2 = masked_array(a_2,mask=m_2) d = mr_['1',b_1,b_2] # append columns assert(d.shape == (5,10)) assert_array_equal(d[:,:5],b_1) assert_array_equal(d[:,5:],b_2) assert_array_equal(d.mask, N.r_['1',m_1,m_2]) d = mr_[b_1,b_2] assert(d.shape == (10,5)) assert_array_equal(d[:5,:],b_1) assert_array_equal(d[5:,:],b_2) assert_array_equal(d.mask, N.r_[m_1,m_2]) class TestNotMasked(NumpyTestCase): "Tests notmasked_edges and notmasked_contiguous." def check_edges(self): "Tests unmasked_edges" a = masked_array(N.arange(24).reshape(3,8), mask=[[0,0,0,0,1,1,1,0], [1,1,1,1,1,1,1,1], [0,0,0,0,0,0,1,0],]) # assert_equal(notmasked_edges(a, None), [0,23]) # tmp = notmasked_edges(a, 0) assert_equal(tmp[0], (array([0,0,0,0,2,2,0]), array([0,1,2,3,4,5,7]))) assert_equal(tmp[1], (array([2,2,2,2,2,2,2]), array([0,1,2,3,4,5,7]))) # tmp = notmasked_edges(a, 1) assert_equal(tmp[0], (array([0,2,]), array([0,0]))) assert_equal(tmp[1], (array([0,2,]), array([7,7]))) def check_contiguous(self): "Tests notmasked_contiguous" a = masked_array(N.arange(24).reshape(3,8), mask=[[0,0,0,0,1,1,1,1], [1,1,1,1,1,1,1,1], [0,0,0,0,0,0,1,0],]) tmp = notmasked_contiguous(a, None) assert_equal(tmp[-1], slice(23,23,None)) assert_equal(tmp[-2], slice(16,21,None)) assert_equal(tmp[-3], slice(0,3,None)) # tmp = notmasked_contiguous(a, 0) assert(len(tmp[-1]) == 1) assert(tmp[-2] is None) assert_equal(tmp[-3],tmp[-1]) assert(len(tmp[0]) == 2) # tmp = notmasked_contiguous(a, 1) assert_equal(tmp[0][-1], slice(0,3,None)) assert(tmp[1] is None) assert_equal(tmp[2][-1], slice(7,7,None)) assert_equal(tmp[2][-2], slice(0,5,None)) class Test2DFunctions(NumpyTestCase): "Tests 2D functions" def check_compress2d(self): "Tests compress2d" x = array(N.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]]) assert_equal(compress_rowcols(x), [[4,5],[7,8]] ) assert_equal(compress_rowcols(x,0), [[3,4,5],[6,7,8]] ) assert_equal(compress_rowcols(x,1), [[1,2],[4,5],[7,8]] ) x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]]) assert_equal(compress_rowcols(x), [[0,2],[6,8]] ) assert_equal(compress_rowcols(x,0), [[0,1,2],[6,7,8]] ) assert_equal(compress_rowcols(x,1), [[0,2],[3,5],[6,8]] ) x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]]) assert_equal(compress_rowcols(x), [[8]] ) assert_equal(compress_rowcols(x,0), [[6,7,8]] ) assert_equal(compress_rowcols(x,1,), [[2],[5],[8]] ) x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]]) assert_equal(compress_rowcols(x).size, 0 ) assert_equal(compress_rowcols(x,0).size, 0 ) assert_equal(compress_rowcols(x,1).size, 0 ) # def check_mask_rowcols(self): "Tests mask_rowcols." x = array(N.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]]) assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,0,0],[1,0,0]] ) assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[0,0,0],[0,0,0]] ) assert_equal(mask_rowcols(x,1).mask, [[1,0,0],[1,0,0],[1,0,0]] ) x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]]) assert_equal(mask_rowcols(x).mask, [[0,1,0],[1,1,1],[0,1,0]] ) assert_equal(mask_rowcols(x,0).mask, [[0,0,0],[1,1,1],[0,0,0]] ) assert_equal(mask_rowcols(x,1).mask, [[0,1,0],[0,1,0],[0,1,0]] ) x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]]) assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,1,1],[1,1,0]] ) assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[1,1,1],[0,0,0]] ) assert_equal(mask_rowcols(x,1,).mask, [[1,1,0],[1,1,0],[1,1,0]] ) x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]]) assert(mask_rowcols(x).all()) assert(mask_rowcols(x,0).all()) assert(mask_rowcols(x,1).all()) # def test_dot(self): "Tests dot product" n = N.arange(1,7) # m = [1,0,0,0,0,0] a = masked_array(n, mask=m).reshape(2,3) b = masked_array(n, mask=m).reshape(3,2) c = dot(a,b,True) assert_equal(c.mask, [[1,1],[1,0]]) c = dot(b,a,True) assert_equal(c.mask, [[1,1,1],[1,0,0],[1,0,0]]) c = dot(a,b,False) assert_equal(c, N.dot(a.filled(0), b.filled(0))) c = dot(b,a,False) assert_equal(c, N.dot(b.filled(0), a.filled(0))) # m = [0,0,0,0,0,1] a = masked_array(n, mask=m).reshape(2,3) b = masked_array(n, mask=m).reshape(3,2) c = dot(a,b,True) assert_equal(c.mask,[[0,1],[1,1]]) c = dot(b,a,True) assert_equal(c.mask, [[0,0,1],[0,0,1],[1,1,1]]) c = dot(a,b,False) assert_equal(c, N.dot(a.filled(0), b.filled(0))) assert_equal(c, dot(a,b)) c = dot(b,a,False) assert_equal(c, N.dot(b.filled(0), a.filled(0))) # m = [0,0,0,0,0,0] a = masked_array(n, mask=m).reshape(2,3) b = masked_array(n, mask=m).reshape(3,2) c = dot(a,b) assert_equal(c.mask,nomask) c = dot(b,a) assert_equal(c.mask,nomask) # a = masked_array(n, mask=[1,0,0,0,0,0]).reshape(2,3) b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2) c = dot(a,b,True) assert_equal(c.mask,[[1,1],[0,0]]) c = dot(a,b,False) assert_equal(c, N.dot(a.filled(0),b.filled(0))) c = dot(b,a,True) assert_equal(c.mask,[[1,0,0],[1,0,0],[1,0,0]]) c = dot(b,a,False) assert_equal(c, N.dot(b.filled(0),a.filled(0))) # a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3) b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2) c = dot(a,b,True) assert_equal(c.mask,[[0,0],[1,1]]) c = dot(a,b) assert_equal(c, N.dot(a.filled(0),b.filled(0))) c = dot(b,a,True) assert_equal(c.mask,[[0,0,1],[0,0,1],[0,0,1]]) c = dot(b,a,False) assert_equal(c, N.dot(b.filled(0), a.filled(0))) # a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3) b = masked_array(n, mask=[0,0,1,0,0,0]).reshape(3,2) c = dot(a,b,True) assert_equal(c.mask,[[1,0],[1,1]]) c = dot(a,b,False) assert_equal(c, N.dot(a.filled(0),b.filled(0))) c = dot(b,a,True) assert_equal(c.mask,[[0,0,1],[1,1,1],[0,0,1]]) c = dot(b,a,False) assert_equal(c, N.dot(b.filled(0),a.filled(0))) def test_ediff1d(self): "Tests mediff1d" x = masked_array(N.arange(5), mask=[1,0,0,0,1]) difx_d = (x._data[1:]-x._data[:-1]) difx_m = (x._mask[1:]-x._mask[:-1]) dx = ediff1d(x) assert_equal(dx._data, difx_d) assert_equal(dx._mask, difx_m) # dx = ediff1d(x, to_begin=masked) assert_equal(dx._data, N.r_[0,difx_d]) assert_equal(dx._mask, N.r_[1,difx_m]) dx = ediff1d(x, to_begin=[1,2,3]) assert_equal(dx._data, N.r_[[1,2,3],difx_d]) assert_equal(dx._mask, N.r_[[0,0,0],difx_m]) # dx = ediff1d(x, to_end=masked) assert_equal(dx._data, N.r_[difx_d,0]) assert_equal(dx._mask, N.r_[difx_m,1]) dx = ediff1d(x, to_end=[1,2,3]) assert_equal(dx._data, N.r_[difx_d,[1,2,3]]) assert_equal(dx._mask, N.r_[difx_m,[0,0,0]]) # dx = ediff1d(x, to_end=masked, to_begin=masked) assert_equal(dx._data, N.r_[0,difx_d,0]) assert_equal(dx._mask, N.r_[1,difx_m,1]) dx = ediff1d(x, to_end=[1,2,3], to_begin=masked) assert_equal(dx._data, N.r_[0,difx_d,[1,2,3]]) assert_equal(dx._mask, N.r_[1,difx_m,[0,0,0]]) # dx = ediff1d(x._data, to_end=masked, to_begin=masked) assert_equal(dx._data, N.r_[0,difx_d,0]) assert_equal(dx._mask, N.r_[1,0,0,0,0,1]) class TestApplyAlongAxis(NumpyTestCase): "Tests 2D functions" def check_3d(self): a = arange(12.).reshape(2,2,3) def myfunc(b): return b[1] xa = apply_along_axis(myfunc,2,a) assert_equal(xa,[[1,4],[7,10]]) class TestMedian(NumpyTestCase): def __init__(self, *args, **kwds): NumpyTestCase.__init__(self, *args, **kwds) # def test_2d(self): "Tests median w/ 2D" (n,p) = (101,30) x = masked_array(numpy.linspace(-1.,1.,n),) x[:10] = x[-10:] = masked z = masked_array(numpy.empty((n,p), dtype=numpy.float_)) z[:,0] = x[:] idx = numpy.arange(len(x)) for i in range(1,p): numpy.random.shuffle(idx) z[:,i] = x[idx] assert_equal(median(z[:,0]), 0) assert_equal(median(z), numpy.zeros((p,))) # def test_3d(self): "Tests median w/ 3D" x = numpy.ma.arange(24).reshape(3,4,2) x[x%3==0] = masked assert_equal(median(x,0), [[12,9],[6,15],[12,9],[18,15]]) x.shape = (4,3,2) assert_equal(median(x,0),[[99,10],[11,99],[13,14]]) x = numpy.ma.arange(24).reshape(4,3,2) x[x%5==0] = masked assert_equal(median(x,0), [[12,10],[8,9],[16,17]]) class TestPolynomial(NumpyTestCase): # def test_polyfit(self): "Tests polyfit" # On ndarrays x = numpy.random.rand(10) y = numpy.random.rand(20).reshape(-1,2) assert_almost_equal(polyfit(x,y,3),numpy.polyfit(x,y,3)) # ON 1D maskedarrays x = x.view(MaskedArray) x[0] = masked y = y.view(MaskedArray) y[0,0] = y[-1,-1] = masked # (C,R,K,S,D) = polyfit(x,y[:,0],3,full=True) (c,r,k,s,d) = numpy.polyfit(x[1:], y[1:,0].compressed(), 3, full=True) for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)): assert_almost_equal(a, a_) # (C,R,K,S,D) = polyfit(x,y[:,-1],3,full=True) (c,r,k,s,d) = numpy.polyfit(x[1:-1], y[1:-1,-1], 3, full=True) for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)): assert_almost_equal(a, a_) # (C,R,K,S,D) = polyfit(x,y,3,full=True) (c,r,k,s,d) = numpy.polyfit(x[1:-1], y[1:-1,:], 3, full=True) for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)): assert_almost_equal(a, a_) ############################################################################### #------------------------------------------------------------------------------ if __name__ == "__main__": NumpyTest().run()