# This module is for compatibility only. All functions are defined elsewhere. from numpy.oldnumeric import * __all__ = numpy.oldnumeric.__all__ __all__ += ['rand', 'tril', 'trapz', 'hanning', 'rot90', 'triu', 'diff', 'angle', 'roots', 'ptp', 'kaiser', 'randn', 'cumprod', 'diag', 'msort', 'LinearAlgebra', 'RandomArray', 'prod', 'std', 'hamming', 'flipud', 'max', 'blackman', 'corrcoef', 'bartlett', 'eye', 'squeeze', 'sinc', 'tri', 'cov', 'svd', 'min', 'median', 'fliplr', 'eig', 'mean'] import linear_algebra as LinearAlgebra import random_array as RandomArray from numpy import tril, trapz as _Ntrapz, hanning, rot90, triu, diff, \ angle, roots, ptp as _Nptp, kaiser, cumprod as _Ncumprod, \ diag, msort, prod as _Nprod, std as _Nstd, hamming, flipud, \ amax as _Nmax, amin as _Nmin, blackman, bartlett, corrcoef as _Ncorrcoef,\ cov as _Ncov, squeeze, sinc, median, fliplr, mean as _Nmean from numpy.linalg import eig, svd from numpy.random import rand, randn from typeconv import oldtype2dtype as o2d def eye(N, M=None, k=0, typecode=None): """ eye returns a N-by-M 2-d array where the k-th diagonal is all ones, and everything else is zeros. """ dtype = o2d[typecode] if M is None: M = N m = nn.equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def tri(N, M=None, k=0, typecode=None): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. """ dtype = o2d[typecode] if M is None: M = N m = nn.greater_equal(nn.subtract.outer(nn.arange(N), nn.arange(M)),-k) if m.dtype != dtype: return m.astype(dtype) def trapz(y, x=None, axis=-1): return _Ntrapz(y, x, axis=axis) def ptp(x, axis=0): return _Nptp(x, axis) def cumprod(x, axis=0): return _Ncumprod(x, axis) def max(x, axis=0): return _Nmax(x, axis) def min(x, axis=0): return _Nmin(x, axis) def prod(x, axis=0): return _Nprod(x, axis) def std(x, axis=0): return _Nstd(x, axis) def mean(x, axis=0): return _Nmean(x, axis) def cov(m, y=None, rowvar=0, bias=0): return _Ncov(m, y, rowvar, bias) def corrcoef(x, y=None): return _Ncorrcoef(x,y,0,0)