r""" On *nix, execute in randomgen/src/distributions export PYTHON_INCLUDE=#path to Python's include folder, usually \ ${PYTHON_HOME}/include/python${PYTHON_VERSION}m export NUMPY_INCLUDE=#path to numpy's include folder, usually \ ${PYTHON_HOME}/lib/python${PYTHON_VERSION}/site-packages/numpy/core/include gcc -shared -o libdistributions.so -fPIC distributions.c \ -I${NUMPY_INCLUDE} -I${PYTHON_INCLUDE} mv libdistributions.so ../../examples/numba/ On Windows rem PYTHON_HOME is setup dependent, this is an example set PYTHON_HOME=c:\Anaconda cl.exe /LD .\distributions.c -DDLL_EXPORT \ -I%PYTHON_HOME%\lib\site-packages\numpy\core\include \ -I%PYTHON_HOME%\include %PYTHON_HOME%\libs\python36.lib move distributions.dll ../../examples/numba/ """ import os import numba as nb import numpy as np from cffi import FFI from numpy.random import Xoshiro256 ffi = FFI() if os.path.exists('./distributions.dll'): lib = ffi.dlopen('./distributions.dll') elif os.path.exists('./libdistributions.so'): lib = ffi.dlopen('./libdistributions.so') else: raise RuntimeError('Required DLL/so file was not found.') ffi.cdef(""" double random_gauss_zig(void *bitgen_state); """) x = Xoshiro256() xffi = x.cffi bit_generator = xffi.bit_generator random_gauss_zig = lib.random_gauss_zig def normals(n, bit_generator): out = np.empty(n) for i in range(n): out[i] = random_gauss_zig(bit_generator) return out normalsj = nb.jit(normals, nopython=True) # Numba requires a memory address for void * # Can also get address from x.ctypes.bit_generator.value bit_generator_address = int(ffi.cast('uintptr_t', bit_generator)) norm = normalsj(1000, bit_generator_address) print(norm[:12])