""" Utility function to facilitate testing. """ import os import sys import re import difflib import operator __all__ = ['assert_equal', 'assert_almost_equal','assert_approx_equal', 'assert_array_equal', 'assert_array_less', 'assert_string_equal', 'assert_array_almost_equal', 'jiffies', 'memusage', 'rand', 'runstring', 'raises'] def rand(*args): """Returns an array of random numbers with the given shape. This only uses the standard library, so it is useful for testing purposes. """ import random from numpy.core import zeros, float64 results = zeros(args, float64) f = results.flat for i in range(len(f)): f[i] = random.random() return results if sys.platform[:5]=='linux': def jiffies(_proc_pid_stat = '/proc/%s/stat'%(os.getpid()), _load_time=[]): """ Return number of jiffies (1/100ths of a second) that this process has been scheduled in user mode. See man 5 proc. """ import time if not _load_time: _load_time.append(time.time()) try: f=open(_proc_pid_stat,'r') l = f.readline().split(' ') f.close() return int(l[13]) except: return int(100*(time.time()-_load_time[0])) def memusage(_proc_pid_stat = '/proc/%s/stat'%(os.getpid())): """ Return virtual memory size in bytes of the running python. """ try: f=open(_proc_pid_stat,'r') l = f.readline().split(' ') f.close() return int(l[22]) except: return else: # os.getpid is not in all platforms available. # Using time is safe but inaccurate, especially when process # was suspended or sleeping. def jiffies(_load_time=[]): """ Return number of jiffies (1/100ths of a second) that this process has been scheduled in user mode. [Emulation with time.time]. """ import time if not _load_time: _load_time.append(time.time()) return int(100*(time.time()-_load_time[0])) def memusage(): """ Return memory usage of running python. [Not implemented]""" raise NotImplementedError if os.name=='nt' and sys.version[:3] > '2.3': # Code "stolen" from enthought/debug/memusage.py def GetPerformanceAttributes(object, counter, instance = None, inum=-1, format = None, machine=None): # NOTE: Many counters require 2 samples to give accurate results, # including "% Processor Time" (as by definition, at any instant, a # thread's CPU usage is either 0 or 100). To read counters like this, # you should copy this function, but keep the counter open, and call # CollectQueryData() each time you need to know. # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp # My older explanation for this was that the "AddCounter" process forced # the CPU to 100%, but the above makes more sense :) import win32pdh if format is None: format = win32pdh.PDH_FMT_LONG path = win32pdh.MakeCounterPath( (machine,object,instance, None, inum,counter) ) hq = win32pdh.OpenQuery() try: hc = win32pdh.AddCounter(hq, path) try: win32pdh.CollectQueryData(hq) type, val = win32pdh.GetFormattedCounterValue(hc, format) return val finally: win32pdh.RemoveCounter(hc) finally: win32pdh.CloseQuery(hq) def memusage(processName="python", instance=0): # from win32pdhutil, part of the win32all package import win32pdh return GetPerformanceAttributes("Process", "Virtual Bytes", processName, instance, win32pdh.PDH_FMT_LONG, None) def build_err_msg(arrays, err_msg, header='Items are not equal:', verbose=True, names=('ACTUAL', 'DESIRED')): msg = ['\n' + header] if err_msg: if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header): msg = [msg[0] + ' ' + err_msg] else: msg.append(err_msg) if verbose: for i, a in enumerate(arrays): try: r = repr(a) except: r = '[repr failed]' if r.count('\n') > 3: r = '\n'.join(r.splitlines()[:3]) r += '...' msg.append(' %s: %s' % (names[i], r)) return '\n'.join(msg) def assert_equal(actual,desired,err_msg='',verbose=True): """ Raise an assertion if two items are not equal. I think this should be part of unittest.py """ if isinstance(desired, dict): assert isinstance(actual, dict), repr(type(actual)) assert_equal(len(actual),len(desired),err_msg,verbose) for k,i in desired.items(): assert k in actual, repr(k) assert_equal(actual[k], desired[k], 'key=%r\n%s' % (k,err_msg), verbose) return if isinstance(desired, (list,tuple)) and isinstance(actual, (list,tuple)): assert_equal(len(actual),len(desired),err_msg,verbose) for k in range(len(desired)): assert_equal(actual[k], desired[k], 'item=%r\n%s' % (k,err_msg), verbose) return from numpy.core import ndarray if isinstance(actual, ndarray) or isinstance(desired, ndarray): return assert_array_equal(actual, desired, err_msg) msg = build_err_msg([actual, desired], err_msg, verbose=verbose) assert desired == actual, msg def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True): """ Raise an assertion if two items are not equal. I think this should be part of unittest.py The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal) """ from numpy.core import ndarray if isinstance(actual, ndarray) or isinstance(desired, ndarray): return assert_array_almost_equal(actual, desired, decimal, err_msg) msg = build_err_msg([actual, desired], err_msg, verbose=verbose) assert round(abs(desired - actual),decimal) == 0, msg def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True): """ Raise an assertion if two items are not equal. I think this should be part of unittest.py Approximately equal is defined as the number of significant digits correct """ import math actual, desired = map(float, (actual, desired)) if desired==actual: return # Normalized the numbers to be in range (-10.0,10.0) scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) try: sc_desired = desired/scale except ZeroDivisionError: sc_desired = 0.0 try: sc_actual = actual/scale except ZeroDivisionError: sc_actual = 0.0 msg = build_err_msg([actual, desired], err_msg, header='Items are not equal to %d significant digits:' % significant, verbose=verbose) assert math.fabs(sc_desired - sc_actual) < pow(10.,-(significant-1)), msg def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header=''): from numpy.core import asarray, isnan, any from numpy import isreal, iscomplex x = asarray(x) y = asarray(y) def isnumber(x): return x.dtype.char in '?bhilqpBHILQPfdgFDG' try: cond = (x.shape==() or y.shape==()) or x.shape == y.shape if not cond: msg = build_err_msg([x, y], err_msg + '\n(shapes %s, %s mismatch)' % (x.shape, y.shape), verbose=verbose, header=header, names=('x', 'y')) assert cond, msg if (isnumber(x) and isnumber(y)) and (any(isnan(x)) or any(isnan(y))): # Handling nan: we first check that x and y have the nan at the # same locations, and then we mask the nan and do the comparison as # usual. xnanid = isnan(x) ynanid = isnan(y) try: assert_array_equal(xnanid, ynanid) except AssertionError: msg = build_err_msg([x, y], err_msg + '\n(x and y nan location mismatch %s, ' \ '%s mismatch)' % (xnanid, ynanid), verbose=verbose, header=header, names=('x', 'y')) val = comparison(x[~xnanid], y[~ynanid]) else: val = comparison(x,y) if isinstance(val, bool): cond = val reduced = [0] else: reduced = val.ravel() cond = reduced.all() reduced = reduced.tolist() if not cond: match = 100-100.0*reduced.count(1)/len(reduced) msg = build_err_msg([x, y], err_msg + '\n(mismatch %s%%)' % (match,), verbose=verbose, header=header, names=('x', 'y')) assert cond, msg except ValueError: msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header, names=('x', 'y')) raise ValueError(msg) def assert_array_equal(x, y, err_msg='', verbose=True): assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal') def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): from numpy.core import around def compare(x, y): return around(abs(x-y),decimal) <= 10.0**(-decimal) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not almost equal') def assert_array_less(x, y, err_msg='', verbose=True): assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not less-ordered') def runstring(astr, dict): exec astr in dict def assert_string_equal(actual, desired): assert isinstance(actual, str),`type(actual)` assert isinstance(desired, str),`type(desired)` if re.match(r'\A'+desired+r'\Z', actual, re.M): return diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1))) diff_list = [] while diff: d1 = diff.pop(0) if d1.startswith(' '): continue if d1.startswith('- '): l = [d1] d2 = diff.pop(0) if d2.startswith('? '): l.append(d2) d2 = diff.pop(0) assert d2.startswith('+ '),`d2` l.append(d2) d3 = diff.pop(0) if d3.startswith('? '): l.append(d3) else: diff.insert(0, d3) if re.match(r'\A'+d2[2:]+r'\Z', d1[2:]): continue diff_list.extend(l) continue assert False, `d1` if not diff_list: return msg = 'Differences in strings:\n%s' % (''.join(diff_list)).rstrip() assert actual==desired, msg def raises(*exceptions): """ Assert that a test function raises one of the specified exceptions to pass. """ # FIXME: when we transition to nose, just use its implementation. It's # better. def deco(function): def f2(*args, **kwds): try: function(*args, **kwds) except exceptions: pass except: # Anything else. raise else: raise AssertionError('%s() did not raise one of (%s)' % (function.__name__, ', '.join([e.__name__ for e in exceptions]))) try: f2.__name__ = function.__name__ except TypeError: # Python 2.3 does not permit this. pass f2.__dict__ = function.__dict__ f2.__doc__ = function.__doc__ f2.__module__ = function.__module__ return f2 return deco