from typing import Any, List, Optional, TYPE_CHECKING import numpy as np if TYPE_CHECKING: from numpy.typing import ArrayLike, DtypeLike, _SupportsArray else: ArrayLike = Any DtypeLike = Any _SupportsArray = Any x1: ArrayLike = True x2: ArrayLike = 5 x3: ArrayLike = 1.0 x4: ArrayLike = 1 + 1j x5: ArrayLike = np.int8(1) x6: ArrayLike = np.float64(1) x7: ArrayLike = np.complex128(1) x8: ArrayLike = np.array([1, 2, 3]) x9: ArrayLike = [1, 2, 3] x10: ArrayLike = (1, 2, 3) x11: ArrayLike = "foo" class A: def __array__(self, dtype: DtypeLike = None) -> np.ndarray: return np.array([1, 2, 3]) x12: ArrayLike = A() scalar: _SupportsArray = np.int64(1) scalar.__array__(np.float64) array: _SupportsArray = np.array(1) array.__array__(np.float64) a: _SupportsArray = A() a.__array__(np.int64) a.__array__(dtype=np.int64) # Escape hatch for when you mean to make something like an object # array. object_array_scalar: Any = (i for i in range(10)) np.array(object_array_scalar)