import sys import types, math import multiarray import umath from umath import * from numerictypes import * from _compiled_base import _insert newaxis = None ndarray = multiarray.ndarray bigndarray = multiarray.bigndarray flatiter = multiarray.flatiter ufunc = type(sin) arange = multiarray.arange array = multiarray.array zeros = multiarray.zeros empty = multiarray.empty fromstring = multiarray.fromstring fromfile = multiarray.fromfile frombuffer = multiarray.frombuffer where = multiarray.where concatenate = multiarray.concatenate fastCopyAndTranspose = multiarray._fastCopyAndTranspose register_dtype = multiarray.register_dtype can_cast = multiarray.can_cast def asarray(a, dtype=None, fortran=False): """returns a as an array. Unlike array(), no copy is performed if a is already an array. Subclasses are converted to base class ndarray. """ return array(a, dtype, copy=0, fortran=fortran) def asanyarray(a, dtype=None,copy=0,fortran=False): """will pass subclasses through... """ return array(a, dtype, copy=0, fortran=fortran, subok=1) def isfortran(a): return a.flags['FNC'] # from Fernando Perez's IPython def zeros_like(a): """Return an array of zeros of the shape and typecode of a. If you don't explicitly need the array to be zeroed, you should instead use empty_like(), which is faster as it only allocates memory.""" a = asanyarray(a) return a.__array_wrap__(zeros(a.shape,a.dtype, a.flags['FNC'])) def empty_like(a): """Return an empty (uninitialized) array of the shape and typecode of a. Note that this does NOT initialize the returned array. If you require your array to be initialized, you should use zeros_like(). """ a = asanyarray(a) return a.__array_wrap__(empty(a.shape,a.dtype, a.flags['FNC'])) # end Fernando's utilities _mode_from_name_dict = {'v': 0, 's' : 1, 'f' : 2} def _mode_from_name(mode): if isinstance(mode, type("")): return _mode_from_name_dict[mode.lower()[0]] return mode def correlate(a,v,mode='valid'): mode = _mode_from_name(mode) return multiarray.correlate(a,v,mode) def convolve(a,v,mode='full'): """Returns the discrete, linear convolution of 1-D sequences a and v; mode can be 0 (valid), 1 (same), or 2 (full) to specify size of the resulting sequence. """ if (len(v) > len(a)): a, v = v, a mode = _mode_from_name(mode) return correlate(a,asarray(v)[::-1],mode) inner = multiarray.inner dot = multiarray.dot def outer(a,b): """outer(a,b) returns the outer product of two vectors. result(i,j) = a(i)*b(j) when a and b are vectors Will accept any arguments that can be made into vectors. """ a = asarray(a) b = asarray(b) return a.ravel()[:,newaxis]*b.ravel()[newaxis,:] def vdot(a, b): """Returns the dot product of 2 vectors (or anything that can be made into a vector). NB: this is not the same as `dot`, as it takes the conjugate of its first argument if complex and always returns a scalar.""" return dot(asarray(a).ravel().conj(), asarray(b).ravel()) # try to import blas optimized dot if available try: # importing this changes the dot function for basic 4 types # to blas-optimized versions. from scipy.lib._dotblas import dot, vdot, inner, alterdot, restoredot except ImportError: def alterdot(): pass def restoredot(): pass def _move_axis_to_0(a, axis): if axis == 0: return a n = a.ndim if axis < 0: axis += n axes = range(1, axis+1) + [0,] + range(axis+1, n) return a.transpose(axes) def cross(a, b, axisa=-1, axisb=-1, axisc=-1): """Return the cross product of two (arrays of) vectors. The cross product is performed over the last axis of a and b by default, and can handle axes with dimensions 2 and 3. For a dimension of 2, the z-component of the equivalent three-dimensional cross product is returned. """ a = _move_axis_to_0(asarray(a), axisa) b = _move_axis_to_0(asarray(b), axisb) msg = "incompatible dimensions for cross product\n"\ "(dimension must be 2 or 3)" if (a.shape[0] not in [2,3]) or (b.shape[0] not in [2,3]): raise ValueError(msg) if a.shape[0] == 2: if (b.shape[0] == 2): cp = a[0]*b[1] - a[1]*b[0] if cp.ndim == 0: return cp else: return cp.swapaxes(0,axisc) else: x = a[1]*b[2] y = -a[0]*b[2] z = a[0]*b[1] - a[1]*b[0] elif a.shape[0] == 3: if (b.shape[0] == 3): x = a[1]*b[2] - a[2]*b[1] y = a[2]*b[0] - a[0]*b[2] z = a[0]*b[1] - a[1]*b[0] else: x = -a[2]*b[1] y = a[2]*b[0] z = a[0]*b[1] - a[1]*b[0] cp = array([x,y,z]) if cp.ndim == 1: return cp else: return cp.swapaxes(0,axisc) #Use numarray's printing function from arrayprint import array2string, get_printoptions, set_printoptions _typelessdata = [int_, float_, complex_] if issubclass(intc, int): _typelessdata.append(intc) if issubclass(longlong, int): _typelessdata.append(longlong) def array_repr(arr, max_line_width=None, precision=None, suppress_small=None): if arr.size > 0 or arr.shape==(0,): lst = array2string(arr, max_line_width, precision, suppress_small, ', ', "array(") else: # show zero-length shape unless it is (0,) lst = "[], shape=%s" % (repr(arr.shape),) typeless = arr.dtype in _typelessdata if arr.__class__ is not ndarray: cName= arr.__class__.__name__ else: cName = "array" if typeless and arr.size: return cName + "(%s)" % lst else: typename=arr.dtype.__name__[:-8] return cName + "(%s, dtype=%s)" % (lst, typename) def array_str(a, max_line_width = None, precision = None, suppress_small = None): return array2string(a, max_line_width, precision, suppress_small, ' ', "") set_string_function = multiarray.set_string_function set_string_function(array_str, 0) set_string_function(array_repr, 1) little_endian = (sys.byteorder == 'little') def indices(dimensions, dtype=int_): """indices(dimensions,dtype=int_) returns an array representing a grid of indices with row-only, and column-only variation. """ tmp = ones(dimensions, dtype) lst = [] for i in range(len(dimensions)): lst.append( add.accumulate(tmp, i, )-1 ) return array(lst) def fromfunction(function, dimensions, **kwargs): """fromfunction(function, dimensions) returns an array constructed by calling function on a tuple of number grids. The function should accept as many arguments as there are dimensions which is a list of numbers indicating the length of the desired output for each axis. The function can also accept keyword arguments which will be passed in as well. """ args = indices(dimensions) return function(*args,**kwargs) from cPickle import load, loads _cload = load _file = file def load(file): if isinstance(file, type("")): file = _file(file,"rb") return _cload(file) # These are all essentially abbreviations # These might wind up in a special abbreviations module def ones(shape, dtype=int_, fortran=0): """ones(shape, dtype=int_) returns an array of the given dimensions which is initialized to all ones. """ a=zeros(shape, dtype, fortran) a+=1 ### a[...]=1 -- slower? return a def identity(n,dtype=int_): """identity(n) returns the identity matrix of shape n x n. """ a = array([1]+n*[0],dtype=dtype) b = empty((n,n),dtype=dtype) b.flat = a return b def allclose (a, b, rtol=1.e-5, atol=1.e-8): """ allclose(a,b,rtol=1.e-5,atol=1.e-8) Returns true if all components of a and b are equal subject to given tolerances. The relative error rtol must be positive and << 1.0 The absolute error atol comes into play for those elements of y that are very small or zero; it says how small x must be also. """ x = array(a, copy=0) y = array(b, copy=0) d = less(absolute(x-y), atol + rtol * absolute(y)) return alltrue(ravel(d)) _errdict = {"ignore":ERR_IGNORE, "warn":ERR_WARN, "raise":ERR_RAISE, "call":ERR_CALL} _errdict_rev = {} for key in _errdict.keys(): _errdict_rev[_errdict[key]] = key del key def seterr(divide="ignore", over="ignore", under="ignore", invalid="ignore", where=0): maskvalue = (_errdict[divide] << SHIFT_DIVIDEBYZERO) + \ (_errdict[over] << SHIFT_OVERFLOW ) + \ (_errdict[under] << SHIFT_UNDERFLOW) + \ (_errdict[invalid] << SHIFT_INVALID) frame = sys._getframe().f_back try: wh = where.lower()[0] except (AttributeError, TypeError, IndexError): wh = None if where==0 or wh == 'l': frame.f_locals[UFUNC_ERRMASK_NAME] = maskvalue elif where == 1 or wh == 'g': frame.f_globals[UFUNC_ERRMASK_NAME] = maskvalue elif where == 2 or wh == 'b': frame.f_builtins[UFUNC_ERRMASK_NAME] = maskvalue return frame.f_locals[UFUNC_ERRMASK_NAME] = maskvalue return seterr() def geterr(): frame = sys._getframe().f_back try: maskvalue = frame.f_locals[UFUNC_ERRMASK_NAME] except KeyError: maskvalue = ERR_DEFAULT mask = 3 res = {} val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask res['divide'] = _errdict_rev[val] val = (maskvalue >> SHIFT_OVERFLOW) & mask res['over'] = _errdict_rev[val] val = (maskvalue >> SHIFT_UNDERFLOW) & mask res['under'] = _errdict_rev[val] val = (maskvalue >> SHIFT_INVALID) & mask res['invalid'] = _errdict_rev[val] return res def setbufsize(size, where=0): if size > 10e6: raise ValueError, "Very big buffers.. %s" % size frame = sys._getframe().f_back try: wh = where.lower()[0] except (AttributeError, TypeError, IndexError): wh = None if where == 0 or wh == 'l': frame.f_locals[UFUNC_BUFSIZE_NAME] = size elif where == 1 or wh == 'g': frame.f_globals[UFUNC_BUFSIZE_NAME] = size elif where == 2 or wh == 'b': frame.f_builtins[UFUNC_BUFSIZE_NAME] = size return setbufsize(10000, 1) def getbufsize(size): frame = sys._getframe().f_back try: retval = frame.f_locals[UFUNC_BUFSIZE_NAME] except KeyError: retval = frame.f_globals[UFUNC_BUFSIZE_NAME] except KeyError: retval = frame.f_builtins[UFUNC_BUFSIZE_NAME] except KeyError: retvalue = UFUNC_BUFSIZE_DEFAULT return retval # Set the UFUNC_BUFSIZE_NAME to something # Set the UFUNC_ERRMASK_NAME to something seterr(where='builtin') setbufsize(UFUNC_BUFSIZE_DEFAULT,where='builtin') Inf = inf = infty = Infinity = PINF nan = NaN = NAN from oldnumeric import *