1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
import types
import numerix as _nx
__all__ = ['mgrid','ogrid','r_', 'row', 'c_', 'col', 'index_exp']
from type_check import ScalarType, asarray
import function_base
import matrix_base
makemat = _nx.Matrix
class nd_grid:
""" Construct a "meshgrid" in N-dimensions.
grid = nd_grid() creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.
However, if the step length is a COMPLEX NUMBER (e.g. 5j), then the
integer part of it's magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value IS INCLUSIVE.
If instantiated with an argument of 1, the mesh-grid is open or not
fleshed out so that only one-dimension of each returned argument is
greater than 1
Example:
>>> mgrid = nd_grid()
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])
>>> mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> ogrid = nd_grid(1)
>>> ogrid[0:5,0:5]
[array([[0],[1],[2],[3],[4]]), array([[0, 1, 2, 3, 4]])]
"""
def __init__(self, sparse=0):
self.sparse = sparse
def __getitem__(self,key):
try:
size = []
typecode = _nx.Int
for k in range(len(key)):
step = key[k].step
start = key[k].start
if start is None: start=0
if step is None: step=1
if type(step) is type(1j):
size.append(int(abs(step)))
typecode = _nx.Float
else:
size.append(int((key[k].stop - start)/(step*1.0)))
if isinstance(step,types.FloatType) or \
isinstance(start, types.FloatType) or \
isinstance(key[k].stop, types.FloatType):
typecode = _nx.Float
if self.sparse:
nn = map(lambda x,t: _nx.arange(x,typecode=t),size,(typecode,)*len(size))
else:
nn = _nx.indices(size,typecode)
for k in range(len(size)):
step = key[k].step
start = key[k].start
if start is None: start=0
if step is None: step=1
if type(step) is type(1j):
step = int(abs(step))
step = (key[k].stop - start)/float(step-1)
nn[k] = (nn[k]*step+start)
if self.sparse:
slobj = [_nx.NewAxis]*len(size)
for k in range(len(size)):
slobj[k] = slice(None,None)
nn[k] = nn[k][slobj]
slobj[k] = _nx.NewAxis
return nn
except (IndexError, TypeError):
step = key.step
stop = key.stop
start = key.start
if start is None: start = 0
if type(step) is type(1j):
step = abs(step)
length = int(step)
step = (key.stop-start)/float(step-1)
stop = key.stop+step
return _nx.arange(0,length,1,_nx.Float)*step + start
else:
return _nx.arange(start, stop, step)
def __getslice__(self,i,j):
return _nx.arange(i,j)
def __len__(self):
return 0
mgrid = nd_grid()
ogrid = nd_grid(1)
import sys
class concatenator:
""" Translates slice objects to concatenation along an axis.
"""
def _retval(self, res):
if not self.matrix:
return res
else:
if self.axis == 0:
return makemat(res)
else:
return makemat(res).T
def __init__(self, axis=0, matrix=0):
self.axis = axis
self.matrix = matrix
def __getitem__(self,key):
if isinstance(key,types.StringType):
frame = sys._getframe().f_back
mymat = matrix_base.bmat(key,frame.f_globals,frame.f_locals)
if self.matrix:
return mymat
else:
return asarray(mymat)
if type(key) is not types.TupleType:
key = (key,)
objs = []
for k in range(len(key)):
if type(key[k]) is types.SliceType:
typecode = _nx.Int
step = key[k].step
start = key[k].start
stop = key[k].stop
if start is None: start = 0
if step is None:
step = 1
if type(step) is type(1j):
size = int(abs(step))
typecode = _nx.Float
newobj = function_base.linspace(start, stop, num=size)
else:
newobj = _nx.arange(start, stop, step)
elif type(key[k]) in ScalarType:
newobj = asarray([key[k]])
else:
newobj = key[k]
objs.append(newobj)
res = _nx.concatenate(tuple(objs),axis=self.axis)
return self._retval(res)
def __getslice__(self,i,j):
res = _nx.arange(i,j)
return self._retval(res)
def __len__(self):
return 0
r_=concatenator(0)
c_=concatenator(-1)
row = concatenator(0,1)
col = concatenator(-1,1)
# A nicer way to build up index tuples for arrays.
#
# You can do all this with slice() plus a few special objects,
# but there's a lot to remember. This version is simpler because
# it uses the standard array indexing syntax.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 1999-7-23
#
# Cosmetic changes by T. Oliphant 2001
#
#
# This module provides a convenient method for constructing
# array indices algorithmically. It provides one importable object,
# 'index_expression'.
#
# For any index combination, including slicing and axis insertion,
# 'a[indices]' is the same as 'a[index_expression[indices]]' for any
# array 'a'. However, 'index_expression[indices]' can be used anywhere
# in Python code and returns a tuple of slice objects that can be
# used in the construction of complex index expressions.
class _index_expression_class:
import sys
maxint = sys.maxint
def __getitem__(self, item):
if type(item) != type(()):
return (item,)
else:
return item
def __len__(self):
return self.maxint
def __getslice__(self, start, stop):
if stop == self.maxint:
stop = None
return self[start:stop:None]
index_exp = _index_expression_class()
# End contribution from Konrad.
|