1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
from __future__ import division, absolute_import, print_function
import numpy as np
from numpy.testing import TestCase, run_module_suite, assert_array_almost_equal
from numpy.testing import assert_array_equal
import threading
import sys
if sys.version_info[0] >= 3:
import queue
else:
import Queue as queue
def fft1(x):
L = len(x)
phase = -2j*np.pi*(np.arange(L)/float(L))
phase = np.arange(L).reshape(-1, 1) * phase
return np.sum(x*np.exp(phase), axis=1)
class TestFFTShift(TestCase):
def test_fft_n(self):
self.assertRaises(ValueError, np.fft.fft, [1, 2, 3], 0)
class TestFFT1D(TestCase):
def test_basic(self):
rand = np.random.random
x = rand(30) + 1j*rand(30)
assert_array_almost_equal(fft1(x), np.fft.fft(x))
class TestFFTThreadSafe(TestCase):
threads = 16
input_shape = (800, 200)
def _test_mtsame(self, func, *args):
def worker(args, q):
q.put(func(*args))
q = queue.Queue()
expected = func(*args)
# Spin off a bunch of threads to call the same function simultaneously
t = [threading.Thread(target=worker, args=(args, q))
for i in range(self.threads)]
[x.start() for x in t]
[x.join() for x in t]
# Make sure all threads returned the correct value
for i in range(self.threads):
assert_array_equal(q.get(timeout=5), expected,
'Function returned wrong value in multithreaded context')
def test_fft(self):
a = np.ones(self.input_shape) * 1+0j
self._test_mtsame(np.fft.fft, a)
def test_ifft(self):
a = np.ones(self.input_shape) * 1+0j
self._test_mtsame(np.fft.ifft, a)
def test_rfft(self):
a = np.ones(self.input_shape)
self._test_mtsame(np.fft.rfft, a)
def test_irfft(self):
a = np.ones(self.input_shape) * 1+0j
self._test_mtsame(np.fft.irfft, a)
if __name__ == "__main__":
run_module_suite()
|