summaryrefslogtreecommitdiff
path: root/numpy/lib/arrayterator.py
blob: 581e0b31ea55c12280c5d12913c47190d094cea8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
A buffered iterator for big arrays.

This module solves the problem of iterating over a big file-based array
without having to read it into memory. The ``Arrayterator`` class wraps
an array object, and when iterated it will return subarrays with at most
``buf_size`` elements.

The algorithm works by first finding a "running dimension", along which
the blocks will be extracted. Given an array of dimensions (d1, d2, ...,
dn), eg, if ``buf_size`` is smaller than ``d1`` the first dimension will
be used. If, on the other hand,

    d1 < buf_size < d1*d2

the second dimension will be used, and so on. Blocks are extracted along
this dimension, and when the last block is returned the process continues
from the next dimension, until all elements have been read.

"""

from __future__ import division

from operator import mul

__all__ = ['Arrayterator']

class Arrayterator(object):
    """
    Buffered iterator for big arrays.

    This class creates a buffered iterator for reading big arrays in small
    contiguous blocks. The class is useful for objects stored in the
    filesystem. It allows iteration over the object *without* reading
    everything in memory; instead, small blocks are read and iterated over.

    The class can be used with any object that supports multidimensional
    slices, like variables from Scientific.IO.NetCDF, pynetcdf and ndarrays.

    """

    def __init__(self, var, buf_size=None):
        self.var = var
        self.buf_size = buf_size

        self.start = [0 for dim in var.shape]
        self.stop = [dim for dim in var.shape]
        self.step = [1 for dim in var.shape]

    def __getattr__(self, attr):
        return getattr(self.var, attr)

    def __getitem__(self, index):
        """
        Return a new arrayterator.

        """
        # Fix index, handling ellipsis and incomplete slices.
        if not isinstance(index, tuple): index = (index,)
        fixed = []
        length, dims = len(index), len(self.shape)
        for slice_ in index:
            if slice_ is Ellipsis:
                fixed.extend([slice(None)] * (dims-length+1))
                length = len(fixed)
            elif isinstance(slice_, (int, long)):
                fixed.append(slice(slice_, slice_+1, 1))
            else:
                fixed.append(slice_)
        index = tuple(fixed)
        if len(index) < dims:
            index += (slice(None),) * (dims-len(index))

        # Return a new arrayterator object.
        out = self.__class__(self.var, self.buf_size)
        for i, (start, stop, step, slice_) in enumerate(
                zip(self.start, self.stop, self.step, index)):
            out.start[i] = start + (slice_.start or 0)
            out.step[i] = step * (slice_.step or 1)
            out.stop[i] = start + (slice_.stop or stop-start)
            out.stop[i] = min(stop, out.stop[i])
        return out

    def __array__(self):
        """
        Return corresponding data.

        """
        slice_ = tuple(slice(*t) for t in zip(
                self.start, self.stop, self.step))
        return self.var[slice_]

    @property
    def flat(self):
        for block in self:
            for value in block.flat:
                yield value

    @property
    def shape(self):
        return tuple(((stop-start-1)//step+1) for start, stop, step in
                zip(self.start, self.stop, self.step))

    def __iter__(self):
        # Skip arrays with degenerate dimensions
        if [dim for dim in self.shape if dim <= 0]: raise StopIteration

        start = self.start[:]
        stop = self.stop[:]
        step = self.step[:]
        ndims = len(self.var.shape)

        while 1:
            count = self.buf_size or reduce(mul, self.shape)

            # iterate over each dimension, looking for the
            # running dimension (ie, the dimension along which
            # the blocks will be built from)
            rundim = 0
            for i in range(ndims-1, -1, -1):
                # if count is zero we ran out of elements to read
                # along higher dimensions, so we read only a single position
                if count == 0:
                    stop[i] = start[i]+1
                elif count <= self.shape[i]:  # limit along this dimension
                    stop[i] = start[i] + count*step[i]
                    rundim = i
                else:
                    stop[i] = self.stop[i]  # read everything along this
                                            # dimension
                stop[i] = min(self.stop[i], stop[i])
                count = count//self.shape[i]

            # yield a block
            slice_ = tuple(slice(*t) for t in zip(start, stop, step))
            yield self.var[slice_]

            # Update start position, taking care of overflow to
            # other dimensions
            start[rundim] = stop[rundim]  # start where we stopped
            for i in range(ndims-1, 0, -1):
                if start[i] >= self.stop[i]:
                    start[i] = self.start[i]
                    start[i-1] += self.step[i-1]
            if start[0] >= self.stop[0]:
                raise StopIteration