summaryrefslogtreecommitdiff
path: root/numpy/lib/financial.py
blob: 2a751281f3cc45de9273aa6da4e6c2382f1d3bdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# Some simple financial calculations
#  patterned after spreadsheet computations.

# There is some complexity in each function
#  so that the functions behave like ufuncs with
#  broadcasting and being able to be called with scalars
#  or arrays (or other sequences).
import numpy as np

__all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate',
           'irr', 'npv', 'mirr']

_when_to_num = {'end':0, 'begin':1,
                'e':0, 'b':1,
                0:0, 1:1,
                'beginning':1,
                'start':1,
                'finish':0}

eqstr = """

                  nper       / (1 + rate*when) \   /        nper   \
  fv + pv*(1+rate)    + pmt*|-------------------|*| (1+rate)    - 1 | = 0
                             \     rate        /   \               /

       fv + pv + pmt * nper = 0  (when rate == 0)

where (all can be scalars or sequences)

    Parameters
    ----------
    rate :
        Rate of interest (per period)
    nper :
        Number of compounding periods
    pmt :
        Payment
    pv :
        Present value
    fv :
        Future value
    when :
        When payments are due ('begin' (1) or 'end' (0))

"""

def _convert_when(when):
    try:
        return _when_to_num[when]
    except KeyError:
        return [_when_to_num[x] for x in when]


def fv(rate, nper, pmt, pv, when='end'):
    """future value computed by solving the equation
    """
    when = _convert_when(when)
    rate, nper, pmt, pv, when = map(np.asarray, [rate, nper, pmt, pv, when])
    temp = (1+rate)**nper
    miter = np.broadcast(rate, nper, pmt, pv, when)
    zer = np.zeros(miter.shape)
    fact = np.where(rate==zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
    return -(pv*temp + pmt*fact)
fv.__doc__ += eqstr + """
Example
--------

What is the future value after 10 years of saving $100 now, with
  an additional monthly savings of $100.  Assume the interest rate is
  5% (annually) compounded monthly?

>>> fv(0.05/12, 10*12, -100, -100)
15692.928894335748

By convention, the negative sign represents cash flow out (i.e. money not
  available today).  Thus, saving $100 a month at 5% annual interest leads
  to $15,692.93 available to spend in 10 years.
"""

def pmt(rate, nper, pv, fv=0, when='end'):
    """Payment computed by solving the equation
    """
    when = _convert_when(when)
    rate, nper, pv, fv, when = map(np.asarray, [rate, nper, pv, fv, when])
    temp = (1+rate)**nper
    miter = np.broadcast(rate, nper, pv, fv, when)
    zer = np.zeros(miter.shape)
    fact = np.where(rate==zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
    return -(fv + pv*temp) / fact
pmt.__doc__ += eqstr + """
Example
-------

What would the monthly payment need to be to pay off a $200,000 loan in 15
  years at an annual interest rate of 7.5%?

>>> pmt(0.075/12, 12*15, 200000)
-1854.0247200054619

In order to pay-off (i.e. have a future-value of 0) the $200,000 obtained
  today, a monthly payment of $1,854.02 would be required.
"""

def nper(rate, pmt, pv, fv=0, when='end'):
    """Number of periods found by solving the equation
    """
    when = _convert_when(when)
    rate, pmt, pv, fv, when = map(np.asarray, [rate, pmt, pv, fv, when])
    try:
        z = pmt*(1.0+rate*when)/rate
    except ZeroDivisionError:
        z = 0.0
    A = -(fv + pv)/(pmt+0.0)
    B = np.log((-fv+z) / (pv+z))/np.log(1.0+rate)
    miter = np.broadcast(rate, pmt, pv, fv, when)
    zer = np.zeros(miter.shape)
    return np.where(rate==zer, A+zer, B+zer) + 0.0
nper.__doc__ += eqstr + """
Example
-------

If you only had $150 to spend as payment, how long would it take to pay-off
  a loan of $8,000 at 7% annual interest?

>>> nper(0.07/12, -150, 8000)
64.073348770661852

So, over 64 months would be required to pay off the loan.

The same analysis could be done with several different interest rates and/or
    payments and/or total amounts to produce an entire table.

>>> nper(*(ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000]))
array([[[ 32.58497782,  38.57048452],
        [ 71.51317802,  86.37179563]],

       [[ 33.07413144,  39.26244268],
        [ 74.06368256,  90.22989997]]])
"""

def ipmt(rate, per, nper, pv, fv=0.0, when='end'):
    total = pmt(rate, nper, pv, fv, when)
    # Now, compute the nth step in the amortization
    raise NotImplementedError

def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)

def pv(rate, nper, pmt, fv=0.0, when='end'):
    """Number of periods found by solving the equation
    """
    when = _convert_when(when)
    rate, nper, pmt, fv, when = map(np.asarray, [rate, nper, pmt, fv, when])
    temp = (1+rate)**nper
    miter = np.broadcast(rate, nper, pmt, fv, when)
    zer = np.zeros(miter.shape)
    fact = np.where(rate == zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer)
    return -(fv + pmt*fact)/temp
pv.__doc__ += eqstr

# Computed with Sage
#  (y + (r + 1)^n*x + p*((r + 1)^n - 1)*(r*w + 1)/r)/(n*(r + 1)^(n - 1)*x - p*((r + 1)^n - 1)*(r*w + 1)/r^2 + n*p*(r + 1)^(n - 1)*(r*w + 1)/r + p*((r + 1)^n - 1)*w/r)

def _g_div_gp(r, n, p, x, y, w):
    t1 = (r+1)**n
    t2 = (r+1)**(n-1)
    return (y + t1*x + p*(t1 - 1)*(r*w + 1)/r)/(n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r + p*(t1 - 1)*w/r)

# Use Newton's iteration until the change is less than 1e-6
#  for all values or a maximum of 100 iterations is reached.
#  Newton's rule is
#  r_{n+1} = r_{n} - g(r_n)/g'(r_n)
#     where
#  g(r) is the formula
#  g'(r) is the derivative with respect to r.
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
    """Number of periods found by solving the equation
    """
    when = _convert_when(when)
    nper, pmt, pv, fv, when = map(np.asarray, [nper, pmt, pv, fv, when])
    rn = guess
    iter = 0
    close = False
    while (iter < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff<tol)
        iter += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn
rate.__doc__ += eqstr

def irr(values):
    """Internal Rate of Return

    This is the rate of return that gives a net present value of 0.0

    npv(irr(values), values) == 0.0
    """
    res = np.roots(values[::-1])
    # Find the root(s) between 0 and 1
    mask = (res.imag == 0) & (res.real > 0) & (res.real <= 1)
    res = res[mask].real
    if res.size == 0:
        return np.nan
    rate = 1.0/res - 1
    if rate.size == 1:
        rate = rate.item()
    return rate

def npv(rate, values):
    """Net Present Value

    sum ( values_k / (1+rate)**k, k = 1..n)
    """
    values = np.asarray(values)
    return (values / (1+rate)**np.arange(1,len(values)+1)).sum(axis=0)

def mirr(values, finance_rate, reinvest_rate):
    """Modified internal rate of return

    Parameters
    ----------
    values:
        Cash flows (must contain at least one positive and one negative value)
        or nan is returned.
    finance_rate :
        Interest rate paid on the cash flows
    reinvest_rate :
        Interest rate received on the cash flows upon reinvestment
    """

    values = np.asarray(values)
    pos = values > 0
    neg = values < 0
    if not (pos.size > 0 and neg.size > 0):
        return np.nan

    n = pos.size + neg.size
    numer = -npv(reinvest_rate, values[pos])*((1+reinvest_rate)**n)
    denom = npv(finance_rate, values[neg])*(1+finance_rate)
    return (numer / denom)**(1.0/(n-1)) - 1